Suppr超能文献

利用 DNA 纳米技术揭示 DNA 辐射损伤的复杂性。

Unraveling the Complexity of DNA Radiation Damage Using DNA Nanotechnology.

机构信息

Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.

Centre of Physics and Technological Research (CEFITEC), Department of Physics, NOVA School of Science and Technology, University NOVA of Lisbon, Campus de Caparica 2829-516, Portugal.

出版信息

Acc Chem Res. 2024 Jun 4;57(11):1608-1619. doi: 10.1021/acs.accounts.4c00121. Epub 2024 May 23.

Abstract

Radiation cancer therapies use different ionizing radiation qualities that damage DNA molecules in tumor cells by a yet not completely understood plethora of mechanisms and processes. While the direct action of the radiation is significant, the byproducts of the water radiolysis, mainly secondary low-energy electrons (LEEs, <20 eV) and reactive oxygen species (ROS), can also efficiently cause DNA damage, in terms of DNA strand breakage or DNA interstrand cross-linking. As a result, these types of DNA damage evolve into mutations hindering DNA replication, leading to cancer cell death. Concomitant chemo-radiotherapy explores the addition of radiosensitizing therapeutics commonly targeting DNA, such as platinum derivatives and halogenated nucleosides, to enhance the harmful effects of ionizing radiation on the DNA molecule. Further complicating the landscape of DNA damage are secondary structures such as G-quadruplexes occurring in telomeric DNA. These structures protect DNA from radiation damage, rendering them as promising targets for new and more selective cancer radiation treatments, rather than targeting linear DNA. However, despite extensive research, there is no single paradigm approach to understanding the mysterious way in which ionizing radiation causes DNA damage. This is due to the multidisciplinary nature of the field of research, which deals with multiple levels of biological organization, from the molecular building blocks of life toward cells and organisms, as well as with complex multiscale radiation-induced effects. Also, intrinsic DNA features, such as DNA topology and specific oligonucleotide sequences, strongly influence its response to damage from ionizing radiation. In this Account, we present our studies focused on the absolute quantification of photon- and low-energy electron-induced DNA damage in strategically selected target DNA sequences. Our methodology involves using DNA origami nanostructures, specifically the Rothemund triangle, as a platform to expose DNA sequences to either low-energy electrons or vacuum-ultraviolet (VUV, <15 eV) photons and subsequent atomic force microscopy (AFM) analysis. Through this approach, the effects of the DNA sequence, incorporation of halogenated radiosensitizers, DNA topology, and the radiation quality on radiation-induced DNA strand breakage have been systematically assessed and correlated with fundamental photon- and electron-driven mechanisms underlying DNA radiation damage. At lower energies, these mechanisms include dissociative electron attachment (DEA), where electrons attach to DNA molecules causing strand breaks, and dissociative photoexcitation of DNA. Additionally, further dissociative processes such as photoionization and electron impact contribute to the complex cascade of DNA damage events induced by ionizing radiation. We expect that emerging DNA origami-based approaches will lead to a paradigm shift in research fields associated with DNA damage and suggest future directions, which can foster the development of technological applications in nanomedicine, e.g., optimized cancer treatments or the molecular design of optimized radiosensitizing therapeutics.

摘要

放射治疗癌症采用不同的电离辐射质量,通过多种机制和过程破坏肿瘤细胞中的 DNA 分子。虽然辐射的直接作用很重要,但水辐射分解的副产物,主要是次级低能电子(LEE,<20 eV)和活性氧物质(ROS),也可以有效地导致 DNA 损伤,表现为 DNA 链断裂或 DNA 链间交联。因此,这些类型的 DNA 损伤演变成阻碍 DNA 复制的突变,导致癌细胞死亡。同时进行的化学放射治疗探索添加通常靶向 DNA 的放射增敏治疗剂,例如铂衍生物和卤代核苷,以增强电离辐射对 DNA 分子的有害影响。使 DNA 损伤的情况更加复杂的是,端粒 DNA 中存在二级结构,如 G-四链体。这些结构保护 DNA 免受辐射损伤,使它们成为有前途的新的、更有选择性的癌症放射治疗靶点,而不是针对线性 DNA。然而,尽管进行了广泛的研究,但对于电离辐射导致 DNA 损伤的神秘方式,尚无单一的范式方法。这是由于该研究领域的多学科性质,涉及从生命的分子构建块到细胞和生物体的多个层次的生物组织,以及复杂的多尺度辐射诱导效应。此外,内在的 DNA 特征,如 DNA 拓扑结构和特定的寡核苷酸序列,强烈影响其对电离辐射损伤的反应。在本报告中,我们介绍了我们专注于在策略上选择的靶 DNA 序列中定量光子和低能电子诱导的 DNA 损伤的研究。我们的方法包括使用 DNA 折纸纳米结构,特别是 Rothemund 三角形,作为将 DNA 序列暴露于低能电子或真空紫外(VUV,<15 eV)光子的平台,随后进行原子力显微镜(AFM)分析。通过这种方法,我们系统地评估了 DNA 序列、卤化放射增敏剂的掺入、DNA 拓扑结构和辐射质量对辐射诱导的 DNA 链断裂的影响,并将其与 DNA 辐射损伤的基本光子和电子驱动机制相关联。在较低的能量下,这些机制包括电子与 DNA 分子结合导致链断裂的电子离解,以及 DNA 的光解激发。此外,进一步的离解过程,如光电离和电子碰撞,导致由电离辐射诱导的 DNA 损伤事件的复杂级联。我们预计基于新兴 DNA 折纸的方法将引领与 DNA 损伤相关的研究领域的范式转变,并提出未来的方向,这可以促进纳米医学中的技术应用的发展,例如优化的癌症治疗或优化的放射增敏治疗剂的分子设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04bd/11154965/230fe394d369/ar4c00121_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验