Suppr超能文献

使用联网衬衫检测局灶到双侧强直阵挛发作。

Detection of focal to bilateral tonic-clonic seizures using a connected shirt.

机构信息

Department of Neuroscience, Université de Montréal, Montréal, Quebec, Canada.

Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada.

出版信息

Epilepsia. 2024 Aug;65(8):2280-2294. doi: 10.1111/epi.18021. Epub 2024 May 23.

Abstract

OBJECTIVE

This study was undertaken to develop and evaluate a machine learning-based algorithm for the detection of focal to bilateral tonic-clonic seizures (FBTCS) using a novel multimodal connected shirt.

METHODS

We prospectively recruited patients with epilepsy admitted to our epilepsy monitoring unit and asked them to wear the connected shirt while under simultaneous video-electroencephalographic monitoring. Electrocardiographic (ECG) and accelerometric (ACC) signals recorded with the connected shirt were used for the development of the seizure detection algorithm. First, we used a sliding window to extract linear and nonlinear features from both ECG and ACC signals. Then, we trained an extreme gradient boosting algorithm (XGBoost) to detect FBTCS according to seizure onset and offset annotated by three board-certified epileptologists. Finally, we applied a postprocessing step to regularize the classification output. A patientwise nested cross-validation was implemented to evaluate the performances in terms of sensitivity, false alarm rate (FAR), time in false warning (TiW), detection latency, and receiver operating characteristic area under the curve (ROC-AUC).

RESULTS

We recorded 66 FBTCS from 42 patients who wore the connected shirt for a total of 8067 continuous hours. The XGBoost algorithm reached a sensitivity of 84.8% (56/66 seizures), with a median FAR of .55/24 h and a median TiW of 10 s/alarm. ROC-AUC was .90 (95% confidence interval = .88-.91). Median detection latency from the time of progression to the bilateral tonic-clonic phase was 25.5 s.

SIGNIFICANCE

The novel connected shirt allowed accurate detection of FBTCS with a low false alarm rate in a hospital setting. Prospective studies in a residential setting with a real-time and online seizure detection algorithm are required to validate the performance and usability of this device.

摘要

目的

本研究旨在开发并评估一种基于机器学习的算法,以使用新型多模态连接衬衫来检测局灶至双侧强直阵挛发作(FBTCS)。

方法

我们前瞻性招募了入住我院癫痫监测单元的癫痫患者,并要求他们在同时进行视频-脑电图监测时穿着连接衬衫。使用连接衬衫记录的心电图(ECG)和加速度计(ACC)信号用于开发癫痫检测算法。首先,我们使用滑动窗口从 ECG 和 ACC 信号中提取线性和非线性特征。然后,我们根据三位有资质的癫痫专家标注的癫痫发作起始和终止,使用极端梯度提升算法(XGBoost)来检测 FBTCS。最后,我们应用后处理步骤对分类输出进行正则化。采用患者嵌套交叉验证评估敏感性、假警报率(FAR)、虚假警报时间(TiW)、检测潜伏期和接收器工作特征曲线下面积(ROC-AUC)。

结果

我们记录了 42 名穿着连接衬衫的患者共 8067 小时的 66 次 FBTCS。XGBoost 算法的敏感性为 84.8%(56/66 次发作),中位 FAR 为.55/24 小时,中位 TiW 为 10 秒/警报。ROC-AUC 为.90(95%置信区间为.88-.91)。从进展到双侧强直阵挛阶段的中位检测潜伏期为 25.5 秒。

意义

新型连接衬衫可在医院环境中以低假警报率准确检测 FBTCS。需要在住宅环境中进行前瞻性研究,使用实时在线癫痫检测算法,以验证该设备的性能和可用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验