Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
Department of Biology, Temple University, Philadelphia, PA, USA.
Mol Neurobiol. 2024 Dec;61(12):10684-10704. doi: 10.1007/s12035-024-04219-z. Epub 2024 May 23.
Opioid overdose is the leading cause of accidental death in the United States and remains a major public health concern, despite significant resources aimed at combating opioid misuse. Neurobiological research to elucidate molecular and cellular consequences of opioid exposure is required to define avenues to explore for reversal of opioid-induced neuroadaptations. Opioids impart well-documented regulation of the transcriptome and epigenetic modifications in the brain, but opioid-induced epitranscriptomic posttranscriptional regulation of RNA is vastly understudied. N6-methyladenosine (m6A) RNA methylation is significantly enriched in the brain and involved in learning, memory, and reward. m6A modifications have not been studied in opioid use disorder, despite being the most common RNA modification. We detected significant regulation of m6A-modifying enzymes in rat primary cortical cultures following morphine treatment, including AlkB Homolog 5 (Alkbh5). The m6a demethylase ALKBH5 functions as an m6A eraser, removing m6A modifications from mRNA. We hypothesized that chronic opioid treatment regulates m6A modifications through modulation of Alkbh5 and profiled m6A modifications in primary cortical cultures following chronic morphine treatment and Alkbh5 knock-down. We observed differential regulation of m6A modifications for a common set of transcripts following morphine or Alkbh5 knock-down, and the two treatments elicited concordant m6A epitranscriptomic profiles, suggesting that a subset of morphine-driven m6A modifications may be mediated through downregulation of Alkbh5 in cortical cultures. Gene Ontology terms of commonly regulated transcripts included serotonin secretion, synapse disassembly, neuron remodeling, and immune response. Thus, we conclude that morphine can drive epitranscriptomic changes, a subset of which may occur in an Alkbh5-dependent manner.
阿片类药物过量是美国意外死亡的主要原因,尽管有大量资源用于打击阿片类药物滥用,但它仍然是一个主要的公共卫生关注点。需要进行神经生物学研究,以阐明阿片类药物暴露的分子和细胞后果,从而确定探索逆转阿片类药物引起的神经适应性的途径。阿片类药物对大脑中转录组和表观遗传修饰进行了很好的调节,但阿片类药物诱导的 RNA 转录后翻译后修饰的研究却很少。N6-甲基腺苷(m6A)RNA 甲基化在大脑中含量丰富,参与学习、记忆和奖励。尽管 m6A 修饰是最常见的 RNA 修饰,但在阿片类药物使用障碍中尚未进行研究。我们在吗啡处理后的大鼠原代皮质培养物中检测到 m6A 修饰酶的显著调节,包括 AlkB Homolog 5(Alkbh5)。m6A 去甲基酶 ALKBH5 作为 m6A 橡皮擦,从 mRNA 中去除 m6A 修饰。我们假设慢性阿片类药物治疗通过调节 Alkbh5 来调节 m6A 修饰,并在慢性吗啡处理和 Alkbh5 敲低后对原代皮质培养物中的 m6A 修饰进行了分析。我们观察到吗啡或 Alkbh5 敲低后,一组常见转录物的 m6A 修饰存在差异调节,两种处理引起了一致的 m6A 转录后组学谱,这表明皮质培养物中吗啡驱动的 m6A 修饰的一部分可能是通过下调 Alkbh5 介导的。共同调节转录物的基因本体术语包括血清素分泌、突触解体、神经元重塑和免疫反应。因此,我们得出结论,吗啡可以驱动转录后组学变化,其中一部分可能以 Alkbh5 依赖的方式发生。