Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
Cell. 2024 Jun 20;187(13):3249-3261.e14. doi: 10.1016/j.cell.2024.04.031. Epub 2024 May 22.
Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.
耐热型成簇规律间隔短回文重复序列(CRISPR)和 CRISPR 相关(Cas9)酶由于其蛋白寿命延长,可以提高基因组编辑效率和传递效率。然而,最初的实验表明,在培养的人类细胞中,地芽孢杆菌 Cas9(GeoCas9)实际上几乎没有活性。通过在楔形(WED)结构域中获得突变,实验室进化的 GeoCas9 变体克服了这种自然限制,从而产生> 100 倍的更高基因组编辑水平。野生型和改良型 GeoCas9(iGeoCas9)酶的低温电子显微镜(cryo-EM)结构揭示了 iGeoCas9 的 WED 结构域与 DNA 底物之间的扩展接触。生化分析表明,iGeoCas9 加速 DNA 解旋,以在典型的哺乳动物但不是细菌细胞的镁限制条件下捕获底物。这些发现使 Cas9 同源物的合理工程改造能够提高基因组编辑水平,为编辑酶的改进指明了一条通用策略。总之,这些结果揭示了 Cas9 WED 结构域在 DNA 解旋中的新作用,并证明了靶标解旋的加速如何显著提高 Cas9 诱导的基因组编辑活性。