Suppr超能文献

独立单晶反铁电体PbZrO膜具有显著的柔韧性。

Remarkable flexibility in freestanding single-crystalline antiferroelectric PbZrO membranes.

作者信息

Guo Yunting, Peng Bin, Lu Guangming, Dong Guohua, Yang Guannan, Chen Bohan, Qiu Ruibin, Liu Haixia, Zhang Butong, Yao Yufei, Zhao Yanan, Li Suzhi, Ding Xiangdong, Sun Jun, Liu Ming

机构信息

State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China.

出版信息

Nat Commun. 2024 May 24;15(1):4414. doi: 10.1038/s41467-024-47419-w.

Abstract

The ultrahigh flexibility and elasticity achieved in freestanding single-crystalline ferroelectric oxide membranes have attracted much attention recently. However, for antiferroelectric oxides, the flexibility limit and fundamental mechanism in their freestanding membranes are still not explored clearly. Here, we successfully fabricate freestanding single-crystalline PbZrO membranes by a water-soluble sacrificial layer technique. They exhibit good antiferroelectricity and have a commensurate/incommensurate modulated microstructure. Moreover, they also have good shape recoverability when bending with a small radius of curvature (about 2.4 μm for the thickness of 120 nm), corresponding to a bending strain of 2.5%. They could tolerate a maximum bending strain as large as 3.5%, far beyond their bulk counterpart. Our atomistic simulations reveal that this remarkable flexibility originates from the antiferroelectric-ferroelectric phase transition with the aid of polarization rotation. This study not only suggests the mechanism of antiferroelectric oxides to achieve high flexibility but also paves the way for potential applications in flexible electronics.

摘要

近年来,独立的单晶铁电氧化物薄膜所实现的超高柔韧性和弹性备受关注。然而,对于反铁电氧化物,其独立薄膜中的柔韧性极限和基本机制仍未得到清晰探究。在此,我们通过水溶性牺牲层技术成功制备了独立的单晶PbZrO薄膜。它们表现出良好的反铁电性,并具有相称/不相称调制微观结构。此外,当以小曲率半径(对于120 nm厚度约为2.4μm)弯曲时,它们还具有良好的形状恢复能力,对应于2.5%的弯曲应变。它们能够承受高达3.5%的最大弯曲应变,远远超过其块状对应物。我们的原子模拟表明,这种显著的柔韧性源于借助极化旋转的反铁电 - 铁电相变。这项研究不仅揭示了反铁电氧化物实现高柔韧性的机制,还为柔性电子学的潜在应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a11/11116490/a0bf9407801c/41467_2024_47419_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验