Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
Nat Commun. 2024 May 23;15(1):4399. doi: 10.1038/s41467-024-48671-w.
Soluble methane monooxygenase (sMMO) oxidizes a wide range of carbon feedstocks (C1 to C8) directly using intracellular NADH and is a useful means in developing green routes for industrial manufacturing of chemicals. However, the high-throughput biosynthesis of active recombinant sMMO and the ensuing catalytic oxidation have so far been unsuccessful due to the structural and functional complexity of sMMO, comprised of three functionally complementary components, which remains a major challenge for its industrial applications. Here we develop a catalytically active miniature of sMMO (mini-sMMO), with a turnover frequency of 0.32 s, through an optimal reassembly of minimal and modified components of sMMO on catalytically inert and stable apoferritin scaffold. We characterise the molecular characteristics in detail through in silico and experimental analyses and verifications. Notably, in-situ methanol production in a high-cell-density culture of mini-sMMO-expressing recombinant Escherichia coli resulted in higher yield and productivity (~ 3.0 g/L and 0.11 g/L/h, respectively) compared to traditional methanotrophic production.
可溶性甲烷单加氧酶(sMMO)利用细胞内 NADH 直接氧化范围广泛的碳源(C1 到 C8),是开发用于化学品工业制造的绿色途径的有效手段。然而,由于 sMMO 的结构和功能复杂性,包括三个功能互补的组件,高活性重组 sMMO 的高通量生物合成及其随后的催化氧化迄今为止一直未能成功,这仍然是其工业应用的主要挑战。在这里,我们通过 sMMO 的最小和修饰组件在催化惰性和稳定的脱铁铁蛋白支架上的最佳重新组装,开发了一种具有催化活性的 sMMO 微型(mini-sMMO),其转换频率为 0.32 s。我们通过计算机模拟和实验分析和验证详细描述了分子特征。值得注意的是,与传统的甲烷营养生产相比,在表达 mini-sMMO 的重组大肠杆菌的高密度细胞培养物中进行原位甲醇生产可获得更高的产量和生产率(分别约为 3.0 g/L 和 0.11 g/L/h)。