McAnally Mason, Bocková Jana, Herath Ashanie, Turner Andrew M, Meinert Cornelia, Kaiser Ralf I
Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI, USA.
W.M. Keck Laboratory in Astrochemistry, University of Hawaii at Mānoa, Honolulu, HI, USA.
Nat Commun. 2024 May 23;15(1):4409. doi: 10.1038/s41467-024-48684-5.
For the last century, the source of sulfur in Earth's very first organisms has remained a fundamental, unsolved enigma. While sulfates and their organic derivatives with sulfur in the S(+VI) oxidation state represent core nutrients in contemporary biochemistry, the limited bioavailability of sulfates during Earth's early Archean period proposed that more soluble S(+IV) compounds served as the initial source of sulfur for the first terrestrial microorganisms. Here, we reveal via laboratory simulation experiments that the three simplest alkylsulfonic acids-water soluble organic S(+IV) compounds-can be efficiently produced in interstellar, sulfur-doped ices through interaction with galactic cosmic rays. This discovery opens a previously elusive path into the synthesis of vital astrobiological significance and untangles fundamental mechanisms of a facile preparation of sulfur-containing, biorelevant organics in extraterrestrial ices; these molecules can be eventually incorporated into comets and asteroids before their delivery and detection on Earth such as in the Murchison, Tagish Lake, and Allende meteorites along with the carbonaceous asteroid Ryugu.
在过去的一个世纪里,地球上最早的生物中硫的来源一直是一个基本的未解之谜。虽然硫酸盐及其处于S(+VI)氧化态的含硫有机衍生物是当代生物化学中的核心营养素,但在地球太古宙早期,硫酸盐的生物可利用性有限,这表明更易溶解的S(+IV)化合物是最早的陆地微生物的初始硫源。在这里,我们通过实验室模拟实验揭示,三种最简单的烷基磺酸——水溶性有机S(+IV)化合物——可以通过与银河宇宙射线相互作用,在星际含硫冰中高效生成。这一发现为具有重要天体生物学意义的合成开辟了一条此前难以捉摸的途径,并解开了在外星冰中轻松制备含硫生物相关有机物的基本机制;这些分子最终可以在彗星和小行星被运送到地球并被探测到之前被纳入其中,比如在默奇森陨石、塔吉什湖陨石和阿连德陨石以及碳质小行星龙宫号上被探测到。