利用机器学习预测接受颈椎伸展牵引治疗的慢性非特异性颈痛患者的治疗后结果。

Utilizing machine learning to predict post-treatment outcomes in chronic non-specific neck pain patients undergoing cervical extension traction.

机构信息

Department of Physiotherapy, College of Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.

Neuromusculoskeletal Rehabilitation Research Group, RIMHS-Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.

出版信息

Sci Rep. 2024 May 23;14(1):11781. doi: 10.1038/s41598-024-62812-7.

Abstract

This study explored the application of machine learning in predicting post-treatment outcomes for chronic neck pain patients undergoing a multimodal program featuring cervical extension traction (CET). Pre-treatment demographic and clinical variables were used to develop predictive models capable of anticipating modifications in cervical lordotic angle (CLA), pain and disability of 570 patients treated between 2014 and 2020. Linear regression models used pre-treatment variables of age, body mass index, CLA, anterior head translation, disability index, pain score, treatment frequency, duration and compliance. These models used the sci-kit-learn machine learning library within Python for implementing linear regression algorithms. The linear regression models demonstrated high precision and accuracy, and effectively explained 30-55% of the variability in post-treatment outcomes, the highest for the CLA. This pioneering study integrates machine learning into spinal rehabilitation. The developed models offer valuable information to customize interventions, set realistic expectations, and optimize treatment strategies based on individual patient characteristics as treated conservatively with rehabilitation programs using CET as part of multimodal care.

摘要

本研究探讨了机器学习在预测接受多模式方案治疗的慢性颈痛患者治疗后结果的应用,该方案包括颈椎伸展牵引(CET)。使用治疗前的人口统计学和临床变量来开发预测模型,以预测 570 名 2014 年至 2020 年之间接受治疗的患者的颈椎前凸角(CLA)、疼痛和残疾的变化。线性回归模型使用了年龄、体重指数、CLA、头部前伸、残疾指数、疼痛评分、治疗频率、持续时间和依从性等治疗前变量。这些模型使用 Python 中的 sci-kit-learn 机器学习库来实现线性回归算法。线性回归模型表现出较高的精度和准确性,有效地解释了治疗后结果的 30-55%的可变性,对 CLA 的解释性最高。这项开创性的研究将机器学习融入到脊柱康复中。开发的模型提供了有价值的信息,可以根据个体患者的特征进行干预定制,设定现实的预期,并优化治疗策略,这些患者通过保守治疗,使用 CET 作为多模式治疗的一部分进行康复计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb4d/11116459/e22d7b41e396/41598_2024_62812_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索