Garg Ashna, Rendina Dominick, Bendale Hersh, Akiyama Takahiko, Ojima Iwao
Stony Brook University, Department of Chemistry, Stony Brook, NY, United States.
Gakushuin University, Department of Chemistry, Tokyo, Japan.
Front Chem. 2024 May 9;12:1398397. doi: 10.3389/fchem.2024.1398397. eCollection 2024.
Asymmetric catalysis stands at the forefront of modern chemistry, serving as a cornerstone for the efficient creation of enantiopure chiral molecules characterized by their high selectivity. In this review, we delve into the realm of asymmetric catalytic reactions, which spans various methodologies, each contributing to the broader landscape of the enantioselective synthesis of chiral molecules. Transition metals play a central role as catalysts for a wide range of transformations with chiral ligands such as phosphines, -heterocyclic carbenes (NHCs), etc., facilitating the formation of chiral C-C and C-X bonds, enabling precise control over stereochemistry. Enantioselective photocatalytic reactions leverage the power of light as a driving force for the synthesis of chiral molecules. Asymmetric electrocatalysis has emerged as a sustainable approach, being both atom-efficient and environmentally friendly, while offering a versatile toolkit for enantioselective reductions and oxidations. Biocatalysis relies on nature's most efficient catalysts, i.e., enzymes, to provide exquisite selectivity, as well as a high tolerance for diverse functional groups under mild conditions. Thus, enzymatic optical resolution, kinetic resolution and dynamic kinetic resolution have revolutionized the production of enantiopure compounds. Enantioselective organocatalysis uses metal-free organocatalysts, consisting of modular chiral phosphorus, sulfur and nitrogen components, facilitating remarkably efficient and diverse enantioselective transformations. Additionally, unlocking traditionally unreactive C-H bonds through selective functionalization has expanded the arsenal of catalytic asymmetric synthesis, enabling the efficient and atom-economical construction of enantiopure chiral molecules. Incorporating flow chemistry into asymmetric catalysis has been transformative, as continuous flow systems provide precise control over reaction conditions, enhancing the efficiency and facilitating optimization. Researchers are increasingly adopting hybrid approaches that combine multiple strategies synergistically to tackle complex synthetic challenges. This convergence holds great promise, propelling the field of asymmetric catalysis forward and facilitating the efficient construction of complex molecules in enantiopure form. As these methodologies evolve and complement one another, they push the boundaries of what can be accomplished in catalytic asymmetric synthesis, leading to the discovery of novel, highly selective transformations which may lead to groundbreaking applications across various industries.
不对称催化处于现代化学的前沿,是高效合成对映体纯手性分子的基石,这些分子具有高选择性。在本综述中,我们深入探讨不对称催化反应领域,该领域涵盖各种方法,每种方法都为手性分子的对映选择性合成这一广阔领域做出贡献。过渡金属作为多种转化反应的催化剂发挥着核心作用,这些反应使用手性配体,如膦、氮杂环卡宾(NHCs)等,促进手性碳 - 碳和碳 - 卤键的形成,从而实现对立体化学的精确控制。对映选择性光催化反应利用光的能量作为合成手性分子的驱动力。不对称电催化已成为一种可持续的方法,既具有原子经济性又环保,同时为对映选择性还原和氧化提供了一个多功能工具包。生物催化依赖于自然界中最有效的催化剂,即酶,以提供出色的选择性,以及在温和条件下对各种官能团的高耐受性。因此,酶促光学拆分、动力学拆分和动态动力学拆分彻底改变了对映体纯化合物的生产。对映选择性有机催化使用无金属有机催化剂,由模块化的手性磷、硫和氮组分组成,促进非常高效和多样的对映选择性转化。此外,通过选择性官能化解锁传统上不活泼的碳 - 氢键扩展了催化不对称合成的手段,能够高效且原子经济地构建对映体纯的手性分子。将流动化学纳入不对称催化具有变革性,因为连续流动系统可对反应条件进行精确控制,提高效率并便于优化。研究人员越来越多地采用将多种策略协同结合的混合方法来应对复杂的合成挑战。这种融合前景广阔,推动不对称催化领域向前发展,并促进以对映体纯形式高效构建复杂分子。随着这些方法的不断发展和相互补充,它们突破了催化不对称合成所能达到的极限,导致发现新的、高选择性的转化反应,这可能会在各个行业带来突破性应用。