Suppr超能文献

不对称有机金属电化学合成(AOES)的最新进展

Recent Advances in Asymmetric Organometallic Electrochemical Synthesis (AOES).

作者信息

Ma Cong, Guo Jian-Feng, Xu Shi-Shuo, Mei Tian-Sheng

机构信息

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

出版信息

Acc Chem Res. 2025 Feb 4;58(3):399-414. doi: 10.1021/acs.accounts.4c00656. Epub 2025 Jan 19.

Abstract

ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments. This synergistic approach addresses key challenges inherent in traditional asymmetric transition metal catalysis, particularly those related to the use of redox-active chemical reagents. Furthermore, the redox potentials of molecular electrocatalysts can be conveniently tuned by modifying their ligands, thereby governing the reaction regioselectivity and stereoselectivity. As a result, the AOES has emerged as a powerful and promising tool for the synthesis of chiral compounds.In this Account, we summarize and contextualize our recent efforts in the field of AOES. Our primary strategy involves leveraging the controllability of electrochemical potential and current to regulate the oxidation state of organometallics, thereby facilitating the desired reactions. An efficient asymmetric synthesis platform was established under mild conditions, significantly reducing the reliance on chemical redox reagents. Our research has been systematically categorized into three sections based on distinct electrolysis modes: asymmetric transition metal catalysis combined with anodic oxidation, cathodic reduction, and paired electrolysis. In each section, we highlight our innovative discoveries tailored to the unique characteristics of the respective electrolysis modes.In many transformations, transition metal-catalyzed reactions involving traditional chemical redox reagents and those utilizing electrochemistry exhibit similar reactivities. However, we also observed notable differences in certain cases. These findings include the following: (1) Enhanced efficiency in asymmetric electrochemical synthesis: for instance, the Rh-catalyzed enantioselective electrochemical functionalization of C-H bonds demonstrates superior efficiency. (2) Expanded scope of transformations: certain transformations, previously challenging in traditional transition metal catalysis, can be achieved through electrochemistry due to the tunability of redox potentials. A notable example is the enantioselective reductive coupling of aryl chlorides, which significantly expands the range of accessible transformations. Additionally, our mechanistic studies explore unique techniques intrinsic to electrochemistry, such as controlled potential electrolysis experiments, the impact of electrode materials on catalyst performance, and cyclic voltammetry studies. These investigations provide a more intuitive understanding of the behavior of metal catalysts through the study of electrochemical mechanisms, which can also guide the design of new catalytic systems.The advancements in this field offer a robust platform for environmentally friendly and sustainable selective asymmetric transformations. By integrating electrochemistry with transition metal catalysis, we have developed a versatile approach for organic synthesis that not only enhances the efficiency and selectivity of reactions but also reduces the environmental impact. We anticipate that this Account will stimulate further research and innovation in the realm of AOES, leading to the discovery of new catalytic systems and the development of more sustainable synthetic methodologies.

摘要

概述

近年来,我们的研究团队在不对称有机金属电化学合成(AOES)领域投入了大量精力,该领域将电化学与不对称过渡金属催化相结合。一方面,我们已经论证了有机金属化合物可以作为分子电催化剂(媒介物)来降低过电位,并提高反应的活性和选择性。另一方面,通过电化学可以大幅改善不对称过渡金属催化的条件,通过控制电化学电位和调节电流来精确调节过渡金属的氧化态,进而调节电子转移速率。这种协同方法解决了传统不对称过渡金属催化中固有的关键挑战,特别是那些与使用氧化还原活性化学试剂相关的挑战。此外,分子电催化剂的氧化还原电位可以通过修饰其配体方便地进行调节,从而控制反应的区域选择性和立体选择性。因此,AOES已成为合成手性化合物的强大且有前景的工具。

在本综述中,我们总结并梳理了我们在AOES领域的近期工作。我们的主要策略是利用电化学电位和电流的可控性来调节有机金属化合物的氧化态,从而促进所需的反应。在温和条件下建立了一个高效的不对称合成平台,显著减少了对化学氧化还原试剂的依赖。我们的研究根据不同的电解模式系统地分为三个部分:不对称过渡金属催化与阳极氧化、阴极还原和成对电解相结合。在每个部分中,我们突出了针对各自电解模式独特特性的创新发现。

在许多转化反应中,涉及传统化学氧化还原试剂的过渡金属催化反应与利用电化学的反应表现出相似的反应活性。然而,我们在某些情况下也观察到了显著差异。这些发现包括:(1)不对称电化学合成效率提高:例如,铑催化的C-H键对映选择性电化学官能团化显示出卓越的效率。(2)转化范围扩大:某些在传统过渡金属催化中具有挑战性的转化反应,由于氧化还原电位的可调性,可以通过电化学实现。一个显著的例子是芳基氯化物的对映选择性还原偶联,这大大扩展了可实现的转化范围。此外,我们的机理研究探索了电化学固有的独特技术,如控制电位电解实验、电极材料对催化剂性能的影响以及循环伏安法研究。这些研究通过对电化学机理的研究,为金属催化剂的行为提供了更直观的理解,也可以指导新催化体系的设计。

该领域的进展为环境友好和可持续的选择性不对称转化提供了一个强大的平台。通过将电化学与过渡金属催化相结合,我们开发了一种通用的有机合成方法,不仅提高了反应的效率和选择性,还减少了对环境的影响。我们预计本综述将激发AOES领域的进一步研究和创新,从而发现新的催化体系并开发更可持续的合成方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验