文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Universal cell membrane camouflaged nano-prodrugs with right-side-out orientation adapting for positive pathological vascular remodeling in atherosclerosis.

作者信息

Qin Xian, Zhu Li, Zhong Yuan, Wang Yi, Luo Xiaoshan, Li Jiawei, Yan Fei, Wu Guicheng, Qiu Juhui, Wang Guixue, Qu Kai, Zhang Kun, Wu Wei

机构信息

Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University Chongqing 400030 China

Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrine and Metabolic Diseases Chongqing 404000 China.

出版信息

Chem Sci. 2024 Apr 5;15(20):7524-7544. doi: 10.1039/d4sc00761a. eCollection 2024 May 22.


DOI:10.1039/d4sc00761a
PMID:38784734
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11110172/
Abstract

A right-side-out orientated self-assembly of cell membrane-camouflaged nanotherapeutics is crucial for ensuring their biological functionality inherited from the source cells. In this study, a universal and spontaneous right-side-out coupling-driven ROS-responsive nanotherapeutic approach, based on the intrinsic affinity between phosphatidylserine (PS) on the inner leaflet and PS-targeted peptide modified nanoparticles, has been developed to target foam cells in atherosclerotic plaques. Considering the increased osteopontin (OPN) secretion from foam cells in plaques, a bioengineered cell membrane (OEM) with an overexpression of integrin α9β1 is integrated with ROS-cleavable prodrugs, OEM-coated ETBNPs (OEM-ETBNPs), to enhance targeted drug delivery and on-demand drug release in the local lesion of atherosclerosis. Both and experimental results confirm that OEM-ETBNPs are able to inhibit cellular lipid uptake and simultaneously promote intracellular lipid efflux, regulating the positive cellular phenotypic conversion. This finding offers a versatile platform for the biomedical applications of universal cell membrane camouflaging biomimetic nanotechnology.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/e42999b36f4a/d4sc00761a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/3a3b099427d0/d4sc00761a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/36823c8fee15/d4sc00761a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/a12019b499ef/d4sc00761a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/995d1bb1023b/d4sc00761a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/407c49417c98/d4sc00761a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/5bc91b89e004/d4sc00761a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/51c239d77e97/d4sc00761a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/43c2fa2b8533/d4sc00761a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/e42999b36f4a/d4sc00761a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/3a3b099427d0/d4sc00761a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/36823c8fee15/d4sc00761a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/a12019b499ef/d4sc00761a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/995d1bb1023b/d4sc00761a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/407c49417c98/d4sc00761a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/5bc91b89e004/d4sc00761a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/51c239d77e97/d4sc00761a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/43c2fa2b8533/d4sc00761a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f91/11110172/e42999b36f4a/d4sc00761a-f9.jpg

相似文献

[1]
Universal cell membrane camouflaged nano-prodrugs with right-side-out orientation adapting for positive pathological vascular remodeling in atherosclerosis.

Chem Sci. 2024-4-5

[2]
Spontaneously Right-Side-Out-Orientated Coupling-Driven ROS-Sensitive Nanoparticles on Cell Membrane Inner Leaflet for Efficient Renovation in Vascular Endothelial Injury.

Adv Sci (Weinh). 2023-2

[3]
Red Blood Cell Membrane Spontaneously Coated Nanoprodrug Based on Phosphatidylserine for Antiatherosclerosis Applications.

ACS Appl Mater Interfaces. 2024-9-4

[4]
Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy.

Acta Biomater. 2020-8

[5]
ROS-responsive biomimetic nanoparticles for potential application in targeted anti-atherosclerosis.

Regen Biomater. 2021-7-18

[6]
Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury.

Theranostics. 2021

[7]
Biomimetic-Coated Nanoplatform with Lipid-Specific Imaging and ROS Responsiveness for Atherosclerosis-Targeted Theranostics.

ACS Appl Mater Interfaces. 2021-8-4

[8]
Foam Cell Targeted Liposomes Co-Encapsulating Superoxide Dismutase and Catalase to Attenuate Atherosclerosis by Inhibiting Oxidative Stress.

Discov Med. 2024-2

[9]
Reactive Oxygen Species-Responsive Sequentially Targeted AIE Fluorescent Probe for Precisely Identifying the Atherosclerotic Plaques.

ACS Appl Mater Interfaces. 2023-10-11

[10]
Ultrasound/Optical Dual-Modality Imaging for Evaluation of Vulnerable Atherosclerotic Plaques with Osteopontin Targeted Nanoparticles.

Macromol Biosci. 2019-12-29

引用本文的文献

[1]
The Role of ROS in Atherosclerosis and ROS-Based Nanotherapeutics for Atherosclerosis: Atherosclerotic Lesion Targeting, ROS Scavenging, and ROS-Responsive Activity.

ACS Omega. 2025-5-23

[2]
Macrophage membrane coated nanoscale coordination polymers promote graft survival in allogeneic transplantation.

J Nanobiotechnology. 2025-4-7

本文引用的文献

[1]
Duplex Responsive Nanoplatform with Cascade Targeting for Atherosclerosis Photoacoustic Diagnosis and Multichannel Combination Therapy.

Adv Mater. 2023-5

[2]
Spontaneously Right-Side-Out-Orientated Coupling-Driven ROS-Sensitive Nanoparticles on Cell Membrane Inner Leaflet for Efficient Renovation in Vascular Endothelial Injury.

Adv Sci (Weinh). 2023-2

[3]
An integrin axis induces IFN-β production in plasmacytoid dendritic cells.

J Cell Biol. 2022-9-5

[4]
Vascular smooth muscle cell c-Fos is critical for foam cell formation and atherosclerosis.

Metabolism. 2022-7

[5]
Reactive oxygen species (ROS)-responsive size-reducible nanoassemblies for deeper atherosclerotic plaque penetration and enhanced macrophage-targeted drug delivery.

Bioact Mater. 2022-4-7

[6]
Peptide ligand-SiO microspheres with specific affinity for phosphatidylserine as a new strategy to isolate exosomes and application in proteomics to differentiate hepatic cancer.

Bioact Mater. 2021-12-21

[7]
TET1s deficiency exacerbates oscillatory shear flow-induced atherosclerosis.

Int J Biol Sci. 2022

[8]
Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis.

Adv Mater. 2022-7

[9]
Uptake of oxidative stress-mediated extracellular vesicles by vascular endothelial cells under low magnitude shear stress.

Bioact Mater. 2021-11-6

[10]
Macrophage Polarization Modulated by NF-κB in Polylactide Membranes-Treated Peritendinous Adhesion.

Small. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索