文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物工程过表达 CXCR4 的细胞膜功能化 ROS 响应性纳米治疗剂,用于靶向脑缺血再灌注损伤。

Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury.

机构信息

Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.

Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.

出版信息

Theranostics. 2021 Jul 6;11(16):8043-8056. doi: 10.7150/thno.60785. eCollection 2021.


DOI:10.7150/thno.60785
PMID:34335979
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8315061/
Abstract

As a potentially life-threatening disorder, cerebral ischemia-reperfusion (I/R) injury is associated with significantly high mortality, especially the irreversible brain tissue damage associated with increased reactive oxygen radical production and excessive inflammation. Currently, the insufficiency of targeted drug delivery and "on-demand" drug release remain the greatest challenges for cerebral I/R injury therapy. Bioengineered cell membrane-based nanotherapeutics mimic and enhance natural membrane functions and represent a potentially promising approach, relying on selective interactions between receptors and chemokines and increase nanomedicine delivery efficiency into the target tissues. We employed a systematic method to synthesize biomimetic smart nanoparticles. The CXCR4-overexpressing primary mouse thoracic aorta endothelial cell (PMTAEC) membranes and RAPA@HOP were extruded through a 200 nm polycarbonate porous membrane using a mini-extruder to harvest the RAPA@BMHOP. The bioengineered CXCR4-overexpressing cell membrane-functionalized ROS-responsive nanotherapeutics, loaded with rapamycin (RAPA), were fabricated to enhance the targeted delivery to lesions with pathological overexpression of SDF-1. RAPA@BMHOP exhibited a three-fold higher rate of target delivery efficacy via the CXCR4/SDF-1 axis than its non-targeting counterpart in an model. Additionally, in response to the excessive pathological ROS, nanotherapeutics could be degraded to promote "on-demand" cargo release and balance the ROS level by -hydroxy-benzyl alcohol degradation, thereby scavenging excessive ROS and suppressing the free radical-induced focal damage and local inflammation. Also, the stealth effect of cell membrane coating functionalization on the surface resulted in extended circulation time and high stability of nanoparticles. The biomimetic smart nanotherapeutics with active targeting, developed in this study, significantly improved the therapeutic efficacy and biosafety profiles. Thus, these nanoparticles could be a candidate for efficient therapy of cerebral I/R injury.

摘要

作为一种潜在危及生命的疾病,脑缺血再灌注(I/R)损伤与高死亡率密切相关,尤其是与活性氧自由基产生增加和过度炎症相关的不可逆转的脑组织损伤。目前,靶向药物输送和“按需”药物释放的不足仍然是脑 I/R 损伤治疗的最大挑战。基于细胞膜的仿生纳米治疗剂模拟并增强了天然细胞膜的功能,是一种很有前途的方法,它依赖于受体和趋化因子之间的选择性相互作用,并增加纳米药物向目标组织的输送效率。

我们采用系统的方法合成了仿生智能纳米颗粒。CXCR4 过表达的原代小鼠胸主动脉内皮细胞(PMTAEC)膜和 RAPA@HOP 通过迷你挤出机在 200nm 聚碳酸酯多孔膜中挤出,以收获 RAPA@BMHOP。构建了生物工程化的 CXCR4 过表达细胞膜功能化的 ROS 响应型纳米治疗剂,负载雷帕霉素(RAPA),以增强对 SDF-1 过表达病变的靶向递送。RAPA@BMHOP 通过 CXCR4/SDF-1 轴的靶向递送效率比其非靶向对照物高 3 倍。此外,纳米治疗剂在响应过度病理 ROS 时,可以降解以促进“按需”货物释放,并通过 - 羟基苄醇降解平衡 ROS 水平,从而清除过多的 ROS 并抑制自由基诱导的局部损伤和局部炎症。此外,细胞膜涂层功能化的隐身效应导致纳米粒子的循环时间延长和稳定性提高。

本研究开发的具有主动靶向的仿生智能纳米治疗剂显著提高了治疗效果和生物安全性。因此,这些纳米粒子可能是治疗脑 I/R 损伤的有效候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/e3920a06798e/thnov11p8043g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/4ac01259060c/thnov11p8043g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/066bb119505d/thnov11p8043g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/01e137724aef/thnov11p8043g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/b316c3fdfb57/thnov11p8043g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/f482ddd5eaab/thnov11p8043g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/df4a55435f3c/thnov11p8043g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/e3920a06798e/thnov11p8043g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/4ac01259060c/thnov11p8043g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/066bb119505d/thnov11p8043g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/01e137724aef/thnov11p8043g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/b316c3fdfb57/thnov11p8043g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/f482ddd5eaab/thnov11p8043g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/df4a55435f3c/thnov11p8043g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4ad/8315061/e3920a06798e/thnov11p8043g007.jpg

相似文献

[1]
Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury.

Theranostics. 2021

[2]
Erythrocyte Membrane-Enveloped Salvianolic Acid B Nanoparticles Attenuate Cerebral Ischemia-Reperfusion Injury.

Int J Nanomedicine. 2022

[3]
The Function of SDF-1-CXCR4 Axis in SP Cells-Mediated Protective Role for Renal Ischemia/Reperfusion Injury by SHH/GLI1-ABCG2 Pathway.

Shock. 2017-2

[4]
Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia.

Biomaterials. 2018-8-9

[5]
Neurovascular Unit Protection From Cerebral Ischemia-Reperfusion Injury by Radical-Containing Nanoparticles in Mice.

Stroke. 2017-6-27

[6]
Nanoparticle formulation and in vitro efficacy testing of the mitoNEET ligand NL-1 for drug delivery in a brain endothelial model of ischemic reperfusion-injury.

Int J Pharm. 2020-1-29

[7]
Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment - Synergistic effect of thrombolysis and antioxidant.

Biomaterials. 2019-9

[8]
ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury.

Theranostics. 2020

[9]
ROS-Responsive Mitochondria-Targeting Blended Nanoparticles: Chemo- and Photodynamic Synergistic Therapy for Lung Cancer with On-Demand Drug Release upon Irradiation with a Single Light Source.

Theranostics. 2016-10-1

[10]
Biomimetic nanoparticles with enhanced rapamycin delivery for autism spectrum disorder treatment via autophagy activation and oxidative stress modulation.

Theranostics. 2024-7-15

引用本文的文献

[1]
Exploring the protective effects of ischelium on rat brain ischemia-reperfusion injury.

Sci Prog. 2025

[2]
Oxidative Stress and Intestinal Transcriptome Changes in Type A-Caused Enteritis in Deer.

Genes (Basel). 2025-8-11

[3]
Recent advances in cell membrane-based biomimetic delivery systems for Parkinson's disease: Perspectives and challenges.

Asian J Pharm Sci. 2025-8

[4]
Targeted delivery of extracellular vesicles: the mechanisms, techniques and therapeutic applications.

Mol Biomed. 2024-11-21

[5]
Microenvironment-responsive nanosystems for ischemic stroke therapy.

Theranostics. 2024

[6]
Enhancing Cardioprotection Through Neutrophil-Mediated Delivery of 18β-Glycyrrhetinic Acid in Myocardial Ischemia/Reperfusion Injury.

Adv Sci (Weinh). 2024-11

[7]
Application and Development of Cell Membrane Functionalized Biomimetic Nanoparticles in the Treatment of Acute Ischemic Stroke.

Int J Mol Sci. 2024-8-5

[8]
An Overview on the Physiopathology of the Blood-Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery.

Pharmaceutics. 2024-6-22

[9]
Modulating the RPS27A/PSMD12/NF-κB pathway to control immune response in mouse brain ischemia-reperfusion injury.

Mol Med. 2024-7-22

[10]
Universal cell membrane camouflaged nano-prodrugs with right-side-out orientation adapting for positive pathological vascular remodeling in atherosclerosis.

Chem Sci. 2024-4-5

本文引用的文献

[1]
Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate bone regeneration.

Bioact Mater. 2021-1-23

[2]
Erythrocyte membrane-camouflaged carrier-free nanoassembly of FRET photosensitizer pairs with high therapeutic efficiency and high security for programmed cancer synergistic phototherapy.

Bioact Mater. 2021-1-23

[3]
Injectable silk sericin scaffolds with programmable shape-memory property and neuro-differentiation-promoting activity for individualized brain repair of severe ischemic stroke.

Bioact Mater. 2020-12-29

[4]
Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications.

Theranostics. 2021

[5]
Size-dependent strong metal-support interaction in TiO supported Au nanocatalysts.

Nat Commun. 2020-11-16

[6]
Cryopreservation impairs 3-D migration and cytotoxicity of natural killer cells.

Nat Commun. 2020-10-16

[7]
Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks.

Nat Commun. 2020-9-17

[8]
Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy.

Sci Adv. 2020-7

[9]
Multispecies RNA tomography reveals regulators of hematopoietic stem cell birth in the embryonic aorta.

Blood. 2020-8-13

[10]
Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity.

J Mater Chem B. 2016-8-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索