Pesara Penelope, Szafran Katarzyna, Nguyen Henry C, Sirohiwal Abhishek, Pantazis Dimitrios A, Gabruk Michal
Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 30-387 Cracow Poland
Chem Sci. 2024 Apr 30;15(20):7767-7780. doi: 10.1039/d4sc00923a. eCollection 2024 May 22.
The Light-Dependent Protochlorophyllide Oxidoreductase (LPOR) catalyzes a crucial step in chlorophyll biosynthesis: the rare biological photocatalytic reduction of the double C[double bond, length as m-dash]C bond in the precursor, protochlorophyllide (Pchlide). Despite its fundamental significance, limited structural insights into the active complex have hindered understanding of its reaction mechanism. Recently, a high-resolution cryo-EM structure of LPOR in its active conformation challenged our view of pigment binding, residue interactions, and the catalytic process. Surprisingly, this structure contrasts markedly with previous assumptions, particularly regarding the orientation of the bound Pchlide. To gain insights into the substrate binding puzzle, we conducted molecular dynamics simulations, quantum-mechanics/molecular-mechanics (QM/MM) calculations, and site-directed mutagenesis. Two Pchlide binding modes were considered, one aligning with historical proposals (mode A) and another consistent with the recent experimental data (mode B). Binding energy calculations revealed that in contrast to the non-specific interactions found for mode A, mode B exhibits distinct stabilizing interactions that support more thermodynamically favorable binding. A comprehensive analysis incorporating QM/MM-based local energy decomposition unraveled a complex interaction network involving Y177, H319, and the C13 carboxy group, influencing the pigment's excited state energy and potentially contributing to substrate specificity. Importantly, our results uniformly favor mode B, challenging established interpretations and emphasizing the need for a comprehensive re-evaluation of the LPOR reaction mechanism in a way that incorporates accurate structural information on pigment interactions and substrate-cofactor positioning in the binding pocket. The results shed light on the intricacies of LPOR's catalytic mechanism and provide a solid foundation for further elucidating the secrets of chlorophyll biosynthesis.
光依赖型原叶绿素酸酯氧化还原酶(LPOR)催化叶绿素生物合成中的关键一步:前体原叶绿素酸酯(Pchlide)中罕见的生物光催化碳碳双键还原反应。尽管其具有根本重要性,但对活性复合物的有限结构认识阻碍了对其反应机制的理解。最近,处于活性构象的LPOR的高分辨率冷冻电镜结构挑战了我们对色素结合、残基相互作用和催化过程的看法。令人惊讶的是,该结构与先前的假设明显不同,特别是关于结合的Pchlide的取向。为了深入了解底物结合难题,我们进行了分子动力学模拟、量子力学/分子力学(QM/MM)计算和定点诱变。考虑了两种Pchlide结合模式,一种与历史提议一致(模式A),另一种与最近的实验数据一致(模式B)。结合能计算表明,与模式A中发现的非特异性相互作用相反,模式B表现出独特的稳定相互作用,支持更热力学有利的结合。结合基于QM/MM的局部能量分解的综合分析揭示了一个复杂的相互作用网络,涉及Y177、H319和C13羧基,影响色素的激发态能量,并可能有助于底物特异性。重要的是,我们的结果一致支持模式B,挑战了既定的解释,并强调需要以纳入色素相互作用的准确结构信息和结合口袋中底物 - 辅因子定位的方式对LPOR反应机制进行全面重新评估。这些结果揭示了LPOR催化机制的复杂性,并为进一步阐明叶绿素生物合成的秘密提供了坚实的基础。