Department of Biochemistry & Biophysics, Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.
Asher Biotherapeutics, South San Francisco, CA, USA.
Nat Plants. 2021 Apr;7(4):437-444. doi: 10.1038/s41477-021-00885-2. Epub 2021 Apr 19.
Chlorophyll biosynthesis, crucial to life on Earth, is tightly regulated because its precursors are phototoxic. In flowering plants, the enzyme light-dependent protochlorophyllide oxidoreductase (LPOR) captures photons to catalyse the penultimate reaction: the reduction of a double bond within protochlorophyllide (Pchlide) to generate chlorophyllide (Chlide). In darkness, LPOR oligomerizes to facilitate photon energy transfer and catalysis. However, the complete three-dimensional structure of LPOR, the higher-order architecture of LPOR oligomers and the implications of these self-assembled states for catalysis, including how LPOR positions Pchlide and the co-factor NADPH, remain unknown. Here, we report the atomic structure of LPOR assemblies by electron cryo-microscopy. LPOR polymerizes with its substrates into helical filaments around constricted lipid bilayer tubes. Portions of LPOR and Pchlide insert into the outer membrane leaflet, targeting the product, Chlide, to the membrane for the final reaction site of chlorophyll biosynthesis. In addition to its crucial photocatalytic role, we show that in darkness LPOR filaments directly shape membranes into high-curvature tubules with the spectral properties of the prolamellar body, whose light-triggered disassembly provides lipids for thylakoid assembly. Moreover, our structure of the catalytic site challenges previously proposed reaction mechanisms. Together, our results reveal a new and unexpected synergy between photosynthetic membrane biogenesis and chlorophyll synthesis in plants, orchestrated by LPOR.
叶绿素生物合成对地球上的生命至关重要,其受到严格调控,因为其前体具有光毒性。在开花植物中,酶光依赖性原叶绿素氧化还原酶(LPOR)捕获光子以催化倒数第二个反应:将原叶绿素(Pchlide)内的双键还原为叶绿素(Chlide)。在黑暗中,LPOR 寡聚化以促进光子能量转移和催化。然而,LPOR 的完整三维结构、LPOR 寡聚体的高级结构以及这些自组装状态对催化的影响,包括 LPOR 如何定位 Pchlide 和辅因子 NADPH,仍然未知。在这里,我们通过电子冷冻显微镜报告了 LPOR 组装体的原子结构。LPOR 与其底物一起聚合形成螺旋状纤维,围绕着收缩的双层脂质管。LPOR 和 Pchlide 的部分插入到外膜小叶中,将产物 Chlide 靶向到膜上,作为叶绿素生物合成的最终反应部位。除了其关键的光催化作用外,我们还表明,在黑暗中,LPOR 纤维直接将膜塑造成具有前质体体光谱特性的高曲率管,其光触发的解体为类囊体组装提供了脂质。此外,我们的催化位点结构挑战了先前提出的反应机制。总之,我们的结果揭示了植物光合作用膜生物发生和叶绿素合成之间新的、出乎意料的协同作用,由 LPOR 协调。