Vedalankar Pratishtha, Tripathy Baishnab C
School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India.
Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310 India.
Physiol Mol Biol Plants. 2024 May;30(5):719-731. doi: 10.1007/s12298-024-01454-5. Epub 2024 May 29.
Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of LPOR structure, structure-function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric and polymeric forms of LPOR.
将原叶绿素酸酯(Pchlide)还原为叶绿素酸酯(Chlide)是叶绿素生物合成途径中的一个主要调控步骤。在含氧光合生物,特别是被子植物中,该反应由光依赖型原叶绿素酸酯氧化还原酶(LPOR)催化。在从暗形态建成向光形态建成转变的过程中,LPOR-NADPH和Pchlide形成三元复合物,以便有效地进行光转化,合成Chlide,进而合成叶绿素。除了脂质外,类胡萝卜素和多顺式叶黄素会影响光活性LPOR复合物和原质体小球(PLBs)的形成。LPOR的晶体结构揭示了在活性位点周围参与Pchlide结合和催化的进化保守半胱氨酸残基。在叶绿体发育的不同阶段表达的不同LPOR亚型,即PORA、PORB和PORC,通过将光敏性Pchlide快速转化为Chlide发挥光保护作用。未进行光转化的Pchlide作为光敏剂产生单线态氧,导致氧化应激和细胞死亡。因此,不同的LPOR亚型在植物发育过程中进化并差异表达,以保护植物免受光损伤,从而在光形态建成过程中发挥关键作用。本综述阐述了LPOR结构的显著特征、结构-功能关系以及LPOR的寡聚体和多聚体形式将Pchlide超快光转化为Chlide 的过程。