Suppr超能文献

低覆盖率测序和瓦伦德效应严重影响了北美狼近亲繁殖、杂合性和有效种群大小估计的准确性。

Low-coverage sequencing and Wahlund effect severely bias estimates of inbreeding, heterozygosity and effective population size in North American wolves.

作者信息

Kardos Marty, Waples Robin S

机构信息

Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA.

School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA.

出版信息

Mol Ecol. 2024 May 24:e17415. doi: 10.1111/mec.17415.

Abstract

vonHoldt et al. ((2024), Molecular Ecology, 33, e17231) (vH24) used low-coverage (average ~ 7X read depth) restriction site-associated DNA sequence data to estimate individual inbreeding and heterozygosity, and recent effective population size (N), in Great Lakes (GL) and Northern Rocky Mountain (RM) wolves. They concluded that RM heterozygosity rapidly declined between 1991 and 2020, and that N declined substantially in GL and RM over the last 50 generations. Here, we evaluate the effects of low sequence coverage and sampling strategy on vH24's findings and provide general recommendations for using sequence data to evaluate inbreeding, heterozygosity and N. Low-coverage sequencing resulted in downwardly biased estimates of individual inbreeding and heterozygosity, and an erroneous large temporal decline in RM heterozygosity due to declining read depth through time. Additionally, vH24's sampling strategy-which combined individuals from several genetically differentiated populations and across at least eight wolf generations-is expected to have resulted in severe downward bias in estimates of recent N for RM. We recommend using high-coverage sequence data ( 15-20X) to estimate inbreeding and heterozygosity. Carefully filtering individuals, loci and genotypes, and using genotype imputation or likelihoods can help to minimise bias when low-coverage sequence data must be used. For estimation of contemporary N, the marginal benefits of using more than 1010 loci are small, so aggressive filtering of loci with low average read depth potentially can retain most individuals without sacrificing much precision. Individuals are relatively more valuable than loci because analyses of contemporary N should focus on roughly single-generation samples from local breeding populations.

摘要

冯·霍尔特等人((2024),《分子生态学》,33卷,e17231)(vH24)使用低覆盖度(平均约7倍读长深度)的限制性位点关联DNA序列数据,来估计大湖(GL)和北落基山(RM)狼的个体近亲繁殖率和杂合度,以及近期有效种群大小(N)。他们得出结论,RM的杂合度在1991年至2020年间迅速下降,并且在过去50代中,GL和RM的N大幅下降。在此,我们评估低序列覆盖度和抽样策略对vH24研究结果的影响,并提供使用序列数据评估近亲繁殖、杂合度和N的一般建议。低覆盖度测序导致个体近亲繁殖率和杂合度的估计值向下偏差,并且由于读长深度随时间下降,导致RM杂合度出现错误的大幅时间下降。此外,vH24的抽样策略——将来自几个遗传分化种群且跨越至少八代狼的个体合并在一起——预计会导致RM近期N估计值出现严重向下偏差。我们建议使用高覆盖度序列数据(15 - 20倍)来估计近亲繁殖率和杂合度。当必须使用低覆盖度序列数据时,仔细筛选个体、位点和基因型,并使用基因型填补或似然性方法,有助于将偏差降至最低。对于当代N的估计,使用超过1010个位点的边际效益很小,因此对平均读长深度低的位点进行积极筛选,有可能在不牺牲太多精度的情况下保留大多数个体。个体相对位点更有价值,因为当代N的分析应侧重于来自当地繁殖种群的大致单代样本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验