Granger Téo, Michelitsch Thomas M, Bestehorn Michael, Riascos Alejandro P, Collet Bernard A
Sorbonne Université, Institut Jean le Rond d'Alembert, CNRS UMR 7190, 4 Place Jussieu, 75252 Paris, Cedex 05, France.
Institut für Physik, Brandenburgische Technische Universität Cottbus-Senftenberg, Erich-Weinert-Straße 1, 03046 Cottbus, Germany.
Entropy (Basel). 2024 Apr 25;26(5):362. doi: 10.3390/e26050362.
We study epidemic spreading in complex networks by a multiple random walker approach. Each walker performs an independent simple Markovian random walk on a complex undirected (ergodic) random graph where we focus on the Barabási-Albert (BA), Erdös-Rényi (ER), and Watts-Strogatz (WS) types. Both walkers and nodes can be either susceptible (S) or infected and infectious (I), representing their state of health. Susceptible nodes may be infected by visits of infected walkers, and susceptible walkers may be infected by visiting infected nodes. No direct transmission of the disease among walkers (or among nodes) is possible. This model mimics a large class of diseases such as Dengue and Malaria with the transmission of the disease via vectors (mosquitoes). Infected walkers may die during the time span of their infection, introducing an additional compartment D of dead walkers. Contrary to the walkers, there is no mortality of infected nodes. Infected nodes always recover from their infection after a random finite time span. This assumption is based on the observation that infectious vectors (mosquitoes) are not ill and do not die from the infection. The infectious time spans of nodes and walkers, and the survival times of infected walkers, are represented by independent random variables. We derive stochastic evolution equations for the mean-field compartmental populations with the mortality of walkers and delayed transitions among the compartments. From linear stability analysis, we derive the basic reproduction numbers RM,R0 with and without mortality, respectively, and prove that RM<R0. For RM,R0>1, the healthy state is unstable, whereas for zero mortality, a stable endemic equilibrium exists (independent of the initial conditions), which we obtained explicitly. We observed that the solutions of the random walk simulations in the considered networks agree well with the mean-field solutions for strongly connected graph topologies, whereas less well for weakly connected structures and for diseases with high mortality. Our model has applications beyond epidemic dynamics, for instance in the kinetics of chemical reactions, the propagation of contaminants, wood fires, and others.
我们通过多随机游走者方法研究复杂网络中的流行病传播。每个游走者在一个复杂的无向(遍历)随机图上进行独立的简单马尔可夫随机游走,我们重点关注巴拉巴西 - 阿尔伯特(BA)、厄多斯 - 雷尼(ER)和瓦茨 - 斯托加茨(WS)类型。游走者和节点都可以是易感的(S)或被感染且具有传染性的(I),表示它们的健康状态。易感节点可能会被受感染的游走者访问而感染,易感游走者可能会因访问受感染的节点而感染。疾病在游走者(或节点)之间不可能直接传播。该模型模拟了一大类疾病,如登革热和疟疾,疾病通过媒介(蚊子)传播。受感染的游走者在感染期间可能死亡,引入了死亡游走者的额外类别D。与游走者不同,受感染的节点不会死亡。受感染的节点在随机的有限时间跨度后总会从感染中恢复。这个假设基于这样的观察,即传染性媒介(蚊子)不会生病,也不会因感染而死亡。节点和游走者的感染时间跨度以及受感染游走者的存活时间由独立的随机变量表示。我们推导了具有游走者死亡率和各类别之间延迟转变的平均场类别种群的随机演化方程。通过线性稳定性分析,我们分别推导了有死亡率和无死亡率时的基本再生数RM、R0,并证明RM < R0。对于RM、R0 > 1,健康状态是不稳定的,而对于零死亡率,存在一个稳定的地方病平衡(与初始条件无关),我们明确得到了该平衡。我们观察到,在所考虑的网络中,随机游走模拟的解与强连通图拓扑的平均场解吻合得很好,而对于弱连通结构和高死亡率疾病则不太吻合。我们的模型在流行病动力学之外还有应用,例如在化学反应动力学、污染物传播、森林火灾等方面。