Bestehorn Michael, Riascos Alejandro P, Michelitsch Thomas M, Collet Bernard A
Institut für Physik, Brandenburgische Technische Universität Cottbus-Senftenberg, 03046 Cottbus, Germany.
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 Ciudad de Mexico, Mexico.
Contin Mech Thermodyn. 2021;33(4):1207-1221. doi: 10.1007/s00161-021-00970-z. Epub 2021 Jan 16.
We analyze the dynamics of a population of independent random walkers on a graph and develop a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a finite ergodic graph in a discrete-time Markovian walk governed by his specific transition matrix. With this assumption, we first derive an upper bound for the reproduction numbers. Then, we assume that a walker is in one of the states: susceptible, infectious, or recovered. An infectious walker remains infectious during a certain characteristic time. If an infectious walker meets a susceptible one on the same node, there is a certain probability for the susceptible walker to get infected. By implementing this hypothesis in computer simulations, we study the space-time evolution of the emerging infection patterns. Generally, random walk approaches seem to have a large potential to study epidemic spreading and to identify the pertinent parameters in epidemic dynamics.
我们分析了图上独立随机游走者群体的动态,并建立了一个简单的流行病传播模型。我们假设每个游走者在由其特定转移矩阵支配的离散时间马尔可夫游走中独立访问有限遍历图的节点。基于这一假设,我们首先推导了繁殖数的上界。然后,我们假设一个游走者处于以下状态之一:易感、感染或康复。感染的游走者在特定的特征时间内保持感染状态。如果一个感染的游走者在同一节点上遇到一个易感的游走者,那么易感游走者被感染的概率是一定的。通过在计算机模拟中实现这一假设,我们研究了新兴感染模式的时空演变。一般来说,随机游走方法似乎在研究流行病传播和识别流行病动力学中的相关参数方面具有很大潜力。