Suppr超能文献

基于双图嵌入和因果推理的个性化协同过滤推荐系统

A Personalized Collaborative Filtering Recommendation System Based on Bi-Graph Embedding and Causal Reasoning.

作者信息

Huang Xiaoli, Wang Junjie, Cui Junying

机构信息

School of Electrical and Electronic Information, Xihua University, Chengdu 610000, China.

出版信息

Entropy (Basel). 2024 Apr 28;26(5):371. doi: 10.3390/e26050371.

Abstract

The integration of graph embedding technology and collaborative filtering algorithms has shown promise in enhancing the performance of recommendation systems. However, existing integrated recommendation algorithms often suffer from feature bias and lack effectiveness in personalized user recommendation. For instance, users' historical interactions with a certain class of items may inaccurately lead to recommendations of all items within that class, resulting in feature bias. Moreover, accommodating changes in user interests over time poses a significant challenge. This study introduces a novel recommendation model, RCKFM, which addresses these shortcomings by leveraging the CoFM model, TransR graph embedding model, backdoor tuning of causal inference, KL divergence, and the factorization machine model. RCKFM focuses on improving graph embedding technology, adjusting feature bias in embedding models, and achieving personalized recommendations. Specifically, it employs the TransR graph embedding model to handle various relationship types effectively, mitigates feature bias using causal inference techniques, and predicts changes in user interests through KL divergence, thereby enhancing the accuracy of personalized recommendations. Experimental evaluations conducted on publicly available datasets, including "MovieLens-1M" and "Douban dataset" from Kaggle, demonstrate the superior performance of the RCKFM model. The results indicate a significant improvement of between 3.17% and 6.81% in key indicators such as precision, recall, normalized discount cumulative gain, and hit rate in the top-10 recommendation tasks. These findings underscore the efficacy and potential impact of the proposed RCKFM model in advancing recommendation systems.

摘要

图嵌入技术与协同过滤算法的整合在提升推荐系统性能方面已展现出潜力。然而,现有的集成推荐算法常常存在特征偏差问题,并且在个性化用户推荐方面缺乏有效性。例如,用户与某类物品的历史交互可能会不准确地导致对该类内所有物品的推荐,从而产生特征偏差。此外,适应用户兴趣随时间的变化构成了一项重大挑战。本研究引入了一种新颖的推荐模型RCKFM,该模型通过利用CoFM模型、TransR图嵌入模型、因果推断的后门调整、KL散度和因子分解机模型来解决这些缺点。RCKFM专注于改进图嵌入技术、调整嵌入模型中的特征偏差并实现个性化推荐。具体而言,它采用TransR图嵌入模型来有效处理各种关系类型,使用因果推断技术减轻特征偏差,并通过KL散度预测用户兴趣的变化,从而提高个性化推荐的准确性。在包括来自Kaggle的“MovieLens - 1M”和“豆瓣数据集”等公开可用数据集上进行的实验评估表明了RCKFM模型的卓越性能。结果显示,在诸如前10推荐任务中的精确率、召回率、归一化折扣累积增益和命中率等关键指标上有3.17%至6.81%的显著提升。这些发现强调了所提出的RCKFM模型在推进推荐系统方面的有效性和潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d19d/11120240/f75271fd220c/entropy-26-00371-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验