Suppr超能文献

基于深度表征学习的个性化电影推荐。

Personalized movie recommendations based on deep representation learning.

作者信息

Li Luyao, Huang Hong, Li Qianqian, Man Junfeng

机构信息

Department of Computer Science, Hunan University of Technology, Zhuzhou, China.

Hunan University of Technology, Zhuzhou, China.

出版信息

PeerJ Comput Sci. 2023 Jul 12;9:e1448. doi: 10.7717/peerj-cs.1448. eCollection 2023.

Abstract

Personalized recommendation is a technical means to help users quickly and efficiently obtain interesting content from massive information. However, the traditional recommendation algorithm is difficult to solve the problem of sparse data and cold-start and does not make reasonable use of the user-item rating matrix. In this article, a personalized recommendation method based on deep belief network (DBN) and softmax regression is proposed to address the issues with traditional recommendation algorithms. In this method, the DBN is used to learn the deep representation of users and items, and the user-item rating matrix is maximized. Then softmax regression is used to learn multiple categories in the feature space to predict the probability of interaction between users and items. Finally, the method is applied to the area of movie recommendation. The key to this method is the negative sampling mechanism, which greatly improves the effectiveness of the recommendations, as a result, creates an accurate list of recommendations. This method was verified and evaluated on Douban and several movielens datasets of different sizes. The experimental results demonstrate that the recommended performance of this model, which has high accuracy and generalization ability, is much better than typical baseline models such as singular value decomposition (SVD), and the mean absolute error (MAE) value is 98%, which is lower than the best baseline model.

摘要

个性化推荐是一种帮助用户从海量信息中快速高效获取感兴趣内容的技术手段。然而,传统推荐算法难以解决数据稀疏和冷启动问题,且未合理利用用户-物品评分矩阵。本文提出一种基于深度信念网络(DBN)和softmax回归的个性化推荐方法,以解决传统推荐算法存在的问题。在该方法中,DBN用于学习用户和物品的深度表示,并最大化用户-物品评分矩阵。然后,使用softmax回归在特征空间中学习多个类别,以预测用户与物品之间交互的概率。最后,将该方法应用于电影推荐领域。此方法的关键是负采样机制,它极大地提高了推荐的有效性,从而创建了准确的推荐列表。该方法在豆瓣和几个不同大小的movielens数据集上进行了验证和评估。实验结果表明,该模型具有较高的准确性和泛化能力,其推荐性能远优于奇异值分解(SVD)等典型基线模型,平均绝对误差(MAE)值为98%,低于最佳基线模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85df/10403217/f8e3c77e62d7/peerj-cs-09-1448-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验