Wang Yue, Wang Ting, Zhu Xing-Yu
School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
Institute of Quantum Information Technology, Suzhou University, Suzhou 234000, China.
Entropy (Basel). 2024 Apr 29;26(5):379. doi: 10.3390/e26050379.
Spin qubits in semiconductor quantum dots are an attractive candidate for scalable quantum information processing. Reliable quantum state transfer and entanglement between spatially separated spin qubits is a highly desirable but challenging goal. Here, we propose a fast and high-fidelity quantum state transfer scheme for two spin qubits mediated by virtual microwave photons. Our general strategy involves using a superadiabatic pulse to eliminate non-adiabatic transitions, without the need for increased control complexity. We show that arbitrary quantum state transfer can be achieved with a fidelity of 95.1% within a 60 ns short time under realistic parameter conditions. We also demonstrate the robustness of this scheme to experimental imperfections and environmental noises. Furthermore, this scheme can be directly applied to the generation of a remote Bell entangled state with a fidelity as high as 97.6%. These results pave the way for fault-tolerant quantum computation on spin quantum network architecture platforms.
半导体量子点中的自旋量子比特是可扩展量子信息处理的一个有吸引力的候选方案。在空间上分离的自旋量子比特之间进行可靠的量子态转移和纠缠是一个非常理想但具有挑战性的目标。在此,我们提出一种由虚拟微波光子介导的用于两个自旋量子比特的快速且高保真的量子态转移方案。我们的总体策略包括使用一个超绝热脉冲来消除非绝热跃迁,而无需增加控制复杂度。我们表明,在现实参数条件下,可在60纳秒的短时间内以95.1%的保真度实现任意量子态转移。我们还证明了该方案对实验缺陷和环境噪声的鲁棒性。此外,该方案可直接应用于生成保真度高达97.6%的远程贝尔纠缠态。这些结果为自旋量子网络架构平台上的容错量子计算铺平了道路。