HRL Laboratories, LLC, Malibu, CA, USA.
Nature. 2023 Mar;615(7954):817-822. doi: 10.1038/s41586-023-05777-3. Epub 2023 Feb 6.
Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but they place strict requirements on the character and correlation of errors. For many qubit technologies, some challenges to achieving fault tolerance can be traced to correlated errors arising from the need to control qubits by injecting microwave energy matching qubit resonances. Here we demonstrate an alternative approach to quantum computation that uses energy-degenerate encoded qubit states controlled by nearest-neighbour contact interactions that partially swap the spin states of electrons with those of their neighbours. Calibrated sequences of such partial swaps, implemented using only voltage pulses, allow universal quantum control while bypassing microwave-associated correlated error sources. We use an array of six Si/SiGe quantum dots, built using a platform that is capable of extending in two dimensions following processes used in conventional microelectronics. We quantify the operational fidelity of universal control of two encoded qubits using interleaved randomized benchmarking, finding a fidelity of 96.3% ± 0.7% for encoded controlled NOT operations and 99.3% ± 0.5% for encoded SWAP. The quantum coherence offered by enriched silicon, the all-electrical and low-crosstalk-control of partial swap operations and the configurable insensitivity of our encoding to certain error sources all combine to offer a strong pathway towards scalable fault tolerance and computational advantage.
量子计算具有已知的硬件加速某些问题的实例,但由于易受噪声或不完善控制导致的小错误影响,实现起来具有挑战性。容错原理可能会使硬件不完善的计算实现加速,但它们对错误的特征和相关性提出了严格的要求。对于许多量子比特技术,实现容错的一些挑战可以追溯到由于需要通过注入与量子比特共振匹配的微波能量来控制量子比特而产生的相关误差。在这里,我们展示了一种替代的量子计算方法,该方法使用能量简并编码的量子比特状态,这些量子比特状态由相邻接触相互作用控制,部分交换电子的自旋状态与其邻居的自旋状态。通过仅使用电压脉冲实现的这种部分交换的校准序列允许通用量子控制,同时绕过与微波相关的相关误差源。我们使用了一个由六个 Si/SiGe 量子点组成的阵列,这些量子点是使用能够在传统微电子学过程之后在二维方向上扩展的平台构建的。我们通过交错随机基准测试来量化两个编码量子比特的通用控制的操作保真度,发现编码受控 NOT 操作的保真度为 96.3%±0.7%,编码 SWAP 的保真度为 99.3%±0.5%。丰富硅提供的量子相干性、部分交换操作的全电和低串扰控制以及我们的编码对某些误差源的可配置不敏感性,都为可扩展容错和计算优势提供了一条强有力的途径。