Xing Siyuan, Charalampidis Efstathios G
Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93407-0403, USA.
Mathematics Department, California Polytechnic State University, San Luis Obispo, CA 93407-0403, USA.
Entropy (Basel). 2024 Apr 30;26(5):396. doi: 10.3390/e26050396.
In this paper, we apply a machine-learning approach to learn traveling solitary waves across various physical systems that are described by families of partial differential equations (PDEs). Our approach integrates a novel interpretable neural network (NN) architecture, called Separable Gaussian Neural Networks (SGNN) into the framework of Physics-Informed Neural Networks (PINNs). Unlike the traditional PINNs that treat spatial and temporal data as independent inputs, the present method leverages wave characteristics to transform data into the so-called co-traveling wave frame. This reformulation effectively addresses the issue of propagation failure in PINNs when applied to large computational domains. Here, the SGNN architecture demonstrates robust approximation capabilities for single-peakon, multi-peakon, and stationary solutions (known as "leftons") within the (1+1)-dimensional, -family of PDEs. In addition, we expand our investigations, and explore not only peakon solutions in the ab-family but also compacton solutions in (2+1)-dimensional, Rosenau-Hyman family of PDEs. A comparative analysis with multi-layer perceptron (MLP) reveals that SGNN achieves comparable accuracy with fewer than a tenth of the neurons, underscoring its efficiency and potential for broader application in solving complex nonlinear PDEs.
在本文中,我们应用一种机器学习方法来研究跨越由偏微分方程(PDE)族描述的各种物理系统的行波孤波。我们的方法将一种名为可分离高斯神经网络(SGNN)的新型可解释神经网络(NN)架构集成到物理信息神经网络(PINN)框架中。与将空间和时间数据视为独立输入的传统PINN不同,本方法利用波的特性将数据转换为所谓的共行波框架。这种重新表述有效地解决了PINN应用于大计算域时的传播失败问题。在这里,SGNN架构展示了对于(1 + 1)维PDE族中的单尖峰子、多尖峰子和平定解(称为“左子”)的强大逼近能力。此外,我们扩展了研究范围,不仅探索了ab族中的尖峰子解,还探索了(2 + 1)维Rosenau - Hyman PDE族中的紧子解。与多层感知器(MLP)的比较分析表明,SGNN用不到十分之一的神经元就能达到相当的精度,突出了其在求解复杂非线性PDE方面的效率和更广泛应用的潜力。