Suppr超能文献

基于物理信息的神经网络能否击败有限元方法?

Can physics-informed neural networks beat the finite element method?

作者信息

Grossmann Tamara G, Komorowska Urszula Julia, Latz Jonas, Schönlieb Carola-Bibiane

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.

Department of Computer Science and Technology, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK.

出版信息

IMA J Appl Math. 2024 May 23;89(1):143-174. doi: 10.1093/imamat/hxae011. eCollection 2024 Jan.

Abstract

Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of PDEs. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear PDEs: Poisson in 1D, 2D and 3D, Allen-Cahn in 1D, semilinear Schrödinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE.

摘要

偏微分方程(PDEs)在物理、生物和其他科学领域中许多过程和系统的数学建模中起着基础性作用。为了模拟此类过程和系统,偏微分方程的解通常需要进行数值近似。例如,有限元方法就是一种常用的标准方法。近期深度神经网络在各种近似任务中的成功促使其被用于偏微分方程的数值求解。这些所谓的物理信息神经网络及其变体已被证明能够成功近似一大类偏微分方程。到目前为止,物理信息神经网络和有限元方法主要是分别进行研究的。在这项工作中,我们在一项系统的计算研究中对这两种方法进行比较。实际上,我们使用这两种方法对各种线性和非线性偏微分方程进行数值求解:一维、二维和三维的泊松方程,一维的艾伦 - 卡恩方程,一维和二维的半线性薛定谔方程。然后我们比较计算成本和近似精度。在求解时间和精度方面,在我们的研究中物理信息神经网络未能超越有限元方法。在一些实验中,它们在评估求解后的偏微分方程时速度更快。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c57/11197852/8a34a10a8894/hxae011f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验