Passias Athanasios, Tsakalos Karolos-Alexandros, Kansizoglou Ioannis, Kanavaki Archontissa Maria, Gkrekidis Athanasios, Menychtas Dimitrios, Aggelousis Nikolaos, Michalopoulou Maria, Gasteratos Antonios, Sirakoulis Georgios Ch
Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece.
Department of Production and Management Engineering, Democritus University of Thrace, 67100 Xanthi, Greece.
Biomimetics (Basel). 2024 May 15;9(5):296. doi: 10.3390/biomimetics9050296.
This study presents a novel solution for ambient assisted living (AAL) applications that utilizes spiking neural networks (SNNs) and reconfigurable neuromorphic processors. As demographic shifts result in an increased need for eldercare, due to a large elderly population that favors independence, there is a pressing need for efficient solutions. Traditional deep neural networks (DNNs) are typically energy-intensive and computationally demanding. In contrast, this study turns to SNNs, which are more energy-efficient and mimic biological neural processes, offering a viable alternative to DNNs. We propose asynchronous cellular automaton-based neurons (ACANs), which stand out for their hardware-efficient design and ability to reproduce complex neural behaviors. By utilizing the remote supervised method (ReSuMe), this study improves spike train learning efficiency in SNNs. We apply this to movement recognition in an elderly population, using motion capture data. Our results highlight a high classification accuracy of 83.4%, demonstrating the approach's efficacy in precise movement activity classification. This method's significant advantage lies in its potential for real-time, energy-efficient processing in AAL environments. Our findings not only demonstrate SNNs' superiority over conventional DNNs in computational efficiency but also pave the way for practical neuromorphic computing applications in eldercare.
本研究提出了一种适用于环境辅助生活(AAL)应用的新颖解决方案,该方案利用了脉冲神经网络(SNN)和可重构神经形态处理器。由于人口结构变化导致对老年护理的需求增加,且大量老年人倾向于独立生活,因此迫切需要高效的解决方案。传统的深度神经网络(DNN)通常能耗大且计算要求高。相比之下,本研究转向了SNN,它更节能且能模拟生物神经过程,为DNN提供了一种可行的替代方案。我们提出了基于异步细胞自动机的神经元(ACAN),其以硬件高效的设计和再现复杂神经行为的能力而脱颖而出。通过利用远程监督方法(ReSuMe),本研究提高了SNN中的脉冲序列学习效率。我们将此应用于老年人群体的运动识别,使用运动捕捉数据。我们的结果突出显示了83.4%的高分类准确率,证明了该方法在精确运动活动分类中的有效性。该方法的显著优势在于其在AAL环境中进行实时、节能处理的潜力。我们的研究结果不仅证明了SNN在计算效率方面优于传统DNN,还为老年护理中的实际神经形态计算应用铺平了道路。