IEEE Trans Neural Netw Learn Syst. 2013 May;24(5):736-48. doi: 10.1109/TNNLS.2012.2230643.
A generalized asynchronous cellular automaton-based neuron model is a special kind of cellular automaton that is designed to mimic the nonlinear dynamics of neurons. The model can be implemented as an asynchronous sequential logic circuit and its control parameter is the pattern of wires among the circuit elements that is adjustable after implementation in a field-programmable gate array (FPGA) device. In this paper, a novel theoretical analysis method for the model is presented. Using this method, stabilities of neuron-like orbits and occurrence mechanisms of neuron-like bifurcations of the model are clarified theoretically. Also, a novel learning algorithm for the model is presented. An equivalent experiment shows that an FPGA-implemented learning algorithm enables an FPGA-implemented model to automatically reproduce typical nonlinear responses and occurrence mechanisms observed in biological and model neurons.
一种基于广义异步细胞自动机的神经元模型是一种特殊的细胞自动机,旨在模拟神经元的非线性动力学。该模型可以实现为异步时序逻辑电路,其控制参数是电路元件之间的连线模式,在现场可编程门阵列 (FPGA) 设备中实现后可以进行调整。本文提出了一种该模型的新的理论分析方法。利用该方法,从理论上阐明了模型类神经元轨道的稳定性和神经元类分叉的发生机制。同时,还提出了该模型的一种新的学习算法。等效实验表明,FPGA 实现的学习算法使 FPGA 实现的模型能够自动再现生物和模型神经元中观察到的典型非线性响应和发生机制。