Sun Yanming, Lu Xiaoying, Huang Yanchen, Wang Guoping
College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen 518060, China.
Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
Nanomaterials (Basel). 2024 May 7;14(10):812. doi: 10.3390/nano14100812.
Nitrogen dioxide (NO) gas sensors are pivotal in upholding environmental integrity and human health, necessitating heightened sensitivity and exceptional selectivity. Despite the prevalent use of metal oxide semiconductors (MOSs) for NO detection, extant solutions exhibit shortcomings in meeting practical application criteria, specifically in response, selectivity, and operational temperatures. Here, we successfully employed a facile microwave-solvothermal method to synthesize a mesoporous CeO/CNCs nanocomposite. This methodology entails the rapid and comprehensive dispersion of CeO nanoparticles onto helical carbon nanocoils (CNCs), resulting in augmented electronic conductivity and an abundance of active sites within the composite. Consequently, the gas-sensing sensitivity of the nanocomposite at room temperature experienced a notable enhancement. Moreover, the presence of cerium oxide and the conversion of Ce and Ce ions facilitated the generation of oxygen vacancies in the composites, thereby further amplifying the sensing performance. Experimental outcomes demonstrate that the nanocomposite exhibited an approximate 9-fold increase in response to 50 ppm NO in comparison to pure CNCs at room temperature. Additionally, the CeO/CNCs sensor displayed remarkable selectivity towards NO when exposed to gases such as NH, CO, SO, CO, and CHOH. This straightforward microwave-solvothermal method presents an appealing strategy for the research and development of intelligent sensors based on CNCs nanomaterials.
二氧化氮(NO)气体传感器对于维护环境完整性和人类健康至关重要,因此需要更高的灵敏度和卓越的选择性。尽管金属氧化物半导体(MOSs)在NO检测中被广泛使用,但现有的解决方案在满足实际应用标准方面存在不足,特别是在响应、选择性和工作温度方面。在此,我们成功地采用了一种简便的微波溶剂热法合成了一种介孔CeO/CNCs纳米复合材料。该方法能使CeO纳米颗粒快速且全面地分散在螺旋碳纳米线圈(CNCs)上,从而提高了复合材料的电子导电性并增加了大量活性位点。因此,该纳米复合材料在室温下的气敏灵敏度有显著提高。此外,氧化铈的存在以及Ce和Ce离子的转化促进了复合材料中氧空位的产生,从而进一步增强了传感性能。实验结果表明,与纯CNCs相比,该纳米复合材料在室温下对50 ppm NO的响应提高了约9倍。此外,当暴露于NH、CO、SO、CO和CHOH等气体时,CeO/CNCs传感器对NO表现出显著的选择性。这种简单的微波溶剂热法为基于CNCs纳米材料的智能传感器的研发提供了一种有吸引力的策略。