Suppr超能文献

富氢表面态在掺硼金刚石界面助力高效光电化学

Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry.

机构信息

Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, 11/12 Narutowicza Str., Gdansk, 80-233, Poland.

Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

出版信息

Small. 2023 Jun;19(26):e2208265. doi: 10.1002/smll.202208265. Epub 2023 Mar 22.

Abstract

Polycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond formation and doping is totally diversified by using high kinetic energies of deuterium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric hindrance during synthesis reactions, which in consequence leads to a preferential (111) texture and more effective boron incorporation into the lattice, reaching a one order of magnitude higher density of charge carriers. This provides the surface reconstruction impacting surficial populations of CC dimers, CH, CO groups, and COOH termination along with enhanced kinetics of their abstraction, as revealed by high-resolution core-level spectroscopies. A series of local densities of states were computed, showing a rich set of highly occupied and localized surface states for samples deposited in deuterium, negating the connotations of band bending. The introduction of enhanced incorporation of boron into (111) facet of diamond leads to the manifestation of surface electronic states below the Fermi level and above the bulk valence band edge. This unique electronic band structure affects the charge transfer kinetics, electron affinity, and diffusion field geometry critical for efficient electrolysis, electrocatalysis, and photoelectrochemistry.

摘要

多晶硼掺杂金刚石是一种很有前途的材料,可用于生物分析、催化和储能等水相电化学应用中的高功率领域。通过利用氘的高动能取代通常应用的氢,可以使金刚石形成和掺杂的化学气相沉积(CVD)工艺完全多样化。在合成反应过程中,等离子体中氘的高浓度会引起原子排列和空间位阻,从而导致优先(111)织构和更有效的硼掺入晶格,达到载流子密度提高一个数量级。这提供了表面重构,影响表面 CC 二聚体、CH、CO 基团和 COOH 末端的表面种群,并通过高分辨率核心能级光谱揭示了它们的抽象动力学增强。计算了一系列局域态密度,对于在氘中沉积的样品,显示出丰富的高占据和局域表面态,否定了能带弯曲的含义。硼更有效地掺入金刚石(111)面会导致费米能级以下和体价带边缘以上的表面电子态的出现。这种独特的电子能带结构影响电荷转移动力学、电子亲和势和扩散场几何形状,对于高效电解、电催化和光电化学至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验