Yuan Yujia, Chen Lisong, Wan Zhipeng, Shi Kai, Teng Xue, Xu Hao, Wu Peng, Shi Jianlin
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
Institute of Eco-Chongming, Shanghai 202162, China.
Sci Adv. 2024 May 24;10(21):eado1755. doi: 10.1126/sciadv.ado1755.
State-of-the-art technology for cyclohexanone oxime production typically demands elevated temperature and pressure, along with the utilization of expensive hydroxylamine sulfate or oxidants. Here, we propose an electrochemistry-assisted cascade strategy for the efficient cyclohexanone ammoximation under ambient conditions by using in situ cathode-generated green oxidants of reactive oxygen species (ROS) such as OOH* and HO. This electrochemical reaction can take place at the cathode, achieving over 95% yield, 99% selectivity of cyclohexanone oxime, and an electron-to-oxime (ETO) efficiency of 96%. Mechanistic analysis reveals that, in addition to the direct ammoximation by in situ-generated OOH* by electrocatalytic ORR, Ti-MOR also play a major role in capturing OOH* directly and converting the in situ-generated HO to OOH*, thus accelerating the ORR-coupled cascade production of cyclohexanone oxime. This work paves a mild, economical, and sustainable energy-efficient electrocatalytic route for the oxime production using oxygen, ammonium bicarbonate, and cyclohexanone.
用于生产环己酮肟的先进技术通常需要高温高压,同时还要使用昂贵的硫酸羟胺或氧化剂。在此,我们提出一种电化学辅助级联策略,通过使用原位阴极生成的活性氧(ROS)如OOH和HO等绿色氧化剂,在环境条件下实现高效的环己酮氨肟化反应。这种电化学反应可在阴极发生,实现超过95%的产率、99%的环己酮肟选择性以及96%的电子到肟(ETO)效率。机理分析表明,除了通过电催化氧还原反应原位生成的OOH直接进行氨肟化反应外,Ti-MOR在直接捕获OOH并将原位生成的HO转化为OOH方面也发挥着主要作用,从而加速了与氧还原反应耦合的环己酮肟级联生产。这项工作为使用氧气、碳酸氢铵和环己酮生产肟开辟了一条温和、经济且可持续的节能电催化路线。