Sheng Youwei, Yang Ruidong, Xie Jiangwei, Yu Hongjie, Deng Kai, Wang Ziqiang, Wang Hongjing, Wang Liang, Xu You
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Small. 2024 Nov;20(47):e2404477. doi: 10.1002/smll.202404477. Epub 2024 Aug 18.
Cyclohexanone oxime is an important intermediate in the chemical industry, especially for the manufacture of nylon-6. The traditional cyclohexanone oxime production strongly relies on cyclohexanone-hydroxylamine and cyclohexanone ammoxidation processes, which require harsh reaction conditions and consume considerable amounts of energy. Herein, direct electrosynthesis of cyclohexanone oxime is reported from environmental pollutants nitrite and cyclohexanone with almost 100% yield by using low-cost CuSe nanosheets as electrocatalysts. Combination of in situ Fourier transform infrared spectroscopy and theoretical calculations verifies that the p-d orbital hybridization between Cu and Se elements could synergistically optimize the surface electronic structure and enable improved adsorption and formation of the key active N intermediate NHOH*, thereby enhancing cyclohexanone/nitrite-to-cyclohexanone oxime conversion over the CuSe nanosheets. Based on these, an efficient asymmetric co-electrolysis system is further demonstrated by coupling cyclohexanone/nitrite-to-cyclohexanone oxime conversion with the upcycling of polyethylene terephthalate plastics, achieveing energy-saving simultaneously production of value-added products (cyclohexanone oxime and glycolic acid).
环己酮肟是化学工业中的一种重要中间体,尤其用于制造尼龙-6。传统的环己酮肟生产严重依赖环己酮-羟胺法和环己酮氨氧化法,这两种方法需要苛刻的反应条件且消耗大量能源。在此,报道了以低成本的硒化铜纳米片作为电催化剂,从环境污染物亚硝酸盐和环己酮直接电合成环己酮肟,产率几乎达到100%。原位傅里叶变换红外光谱和理论计算相结合,证实了铜和硒元素之间的p-d轨道杂化能够协同优化表面电子结构,并改善关键活性N中间体NHOH*的吸附和形成,从而提高硒化铜纳米片上环己酮/亚硝酸盐到环己酮肟的转化率。基于此,通过将环己酮/亚硝酸盐到环己酮肟的转化与聚对苯二甲酸乙二酯塑料的升级循环相结合,进一步展示了一种高效的不对称共电解系统,实现了节能同时生产增值产品(环己酮肟和乙醇酸)。