Xu Hui, Jin Meng, Zhang Shengbo, Zhang Xinyuan, Xu Min, Zhang Yunxia, Wang Guozhong, Zhang Haimin
Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
University of Science and Technology of China, Hefei, 230026, China.
Adv Sci (Weinh). 2025 Feb;12(6):e2413475. doi: 10.1002/advs.202413475. Epub 2024 Dec 17.
Cyclohexanone oxime, a critical precursor for nylon-6 production, is traditionally synthesized via the hydroxylamine method under industrial harsh conditions. Here is present a one-step electrochemical integrated approach for the efficient production of cyclohexanone oxime under ambient conditions. This approach employed the coupling of in situ electro-synthesized HO over a cobalt (Co)-based electrocatalyst with the titanium silicate-1 (TS-1) heterogeneous catalyst to achieve the cyclohexanone ammoximation process. The cathode electrocatalyst is consisted of atomically dispersed Co sites and small Co nanoparticles co-anchored on carboxylic multi-walled carbon nanotubes (CoSAs/SNPs-OCNTs), which delivered superior electrocatalytic activity toward the two-electron oxygen reduction reaction (2e ORR) with high-efficient HO production in 0.1 m sodium phosphate (NaPi). Theoretical calculations revealed that the introduction of Co nanoparticles effectively optimized the binding strength of OOH species on Co atomic sites, thus facilitating the 2e ORR. The subsequent tandem catalytic system achieved a high cyclohexanone conversion of 71.7% ± 1.1% with a cyclohexanone oxime selectivity of 70.3% ± 0.6%. In this system, the TS-1 catalyst effectively captured the OOH intermediate and activated the in situ generated HO to form Ti-OOH species, which promoted the formation of hydroxylamine and thereby enhanced the oxime production performance.
环己酮肟是尼龙-6生产的关键前体,传统上是在工业苛刻条件下通过羟胺法合成的。本文提出了一种在环境条件下高效生产环己酮肟的一步电化学集成方法。该方法采用原位电合成的羟基自由基(HO)在钴(Co)基电催化剂上与钛硅分子筛-1(TS-1)多相催化剂耦合,实现环己酮氨肟化过程。阴极电催化剂由原子分散的Co位点和共锚定在羧基多壁碳纳米管上的小Co纳米颗粒(CoSAs/SNPs-OCNTs)组成,在0.1 m磷酸钠(NaPi)中对两电子氧还原反应(2e ORR)具有优异的电催化活性,能高效产HO。理论计算表明,Co纳米颗粒的引入有效地优化了OOH物种在Co原子位点上的结合强度,从而促进了2e ORR。随后的串联催化体系实现了71.7%±1.1%的高环己酮转化率和70.3%±0.6%的环己酮肟选择性。在该体系中,TS-1催化剂有效地捕获了OOH中间体并激活原位生成的HO形成Ti-OOH物种,促进了羟胺的形成,从而提高了肟的生产性能。