Suppr超能文献

用于重度抑郁症诊断的 microRNA 分类和发现:迈向稳健且可解释的机器学习方法。

MicroRNA classification and discovery for major depressive disorder diagnosis: Towards a robust and interpretable machine learning approach.

机构信息

Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar 32610, Perak, Malaysia.

Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore.

出版信息

J Affect Disord. 2024 Sep 1;360:326-335. doi: 10.1016/j.jad.2024.05.066. Epub 2024 May 22.

Abstract

BACKGROUND

Major depressive disorder (MDD) is notably underdiagnosed and undertreated due to its complex nature and subjective diagnostic methods. Biomarker identification would help provide a clearer understanding of MDD aetiology. Although machine learning (ML) has been implemented in previous studies to study the alteration of microRNA (miRNA) levels in MDD cases, clinical translation has not been feasible due to the lack of interpretability (i.e. too many miRNAs for consideration) and stability.

METHODS

This study applied logistic regression (LR) model to the blood miRNA expression profile to differentiate patients with MDD (n = 60) from healthy controls (HCs, n = 60). Embedded (L1-regularised logistic regression) feature selector was utilised to extract clinically relevant miRNAs, and optimized for clinical application.

RESULTS

Patients with MDD could be differentiated from HCs with the area under the receiver operating characteristic curve (AUC) of 0.81 on testing data when all available miRNAs were considered (which served as a benchmark). Our LR model selected miRNAs up to 5 (known as LR-5 model) emerged as the best model because it achieved a moderate classification ability (AUC = 0.75), relatively high interpretability (feature number = 5) and stability (ϕ̂Z=0.55) compared to the benchmark. The top-ranking miRNAs identified by our model have demonstrated associations with MDD pathways involving cytokine signalling in the immune system, the reelin signalling pathway, programmed cell death and cellular responses to stress.

CONCLUSION

The LR-5 model, which is optimised based on ML design factors, may lead to a robust and clinically usable MDD diagnostic tool.

摘要

背景

由于其复杂性和主观诊断方法,重度抑郁症(MDD)的诊断明显不足且治疗不足。生物标志物的识别将有助于更清楚地了解 MDD 的病因。尽管机器学习(ML)已在前瞻性研究中用于研究 MDD 病例中 microRNA(miRNA)水平的变化,但由于缺乏可解释性(即需要考虑太多 miRNA)和稳定性,因此尚未可行临床转化。

方法

本研究应用逻辑回归(LR)模型对血液 miRNA 表达谱进行分析,以区分 MDD 患者(n=60)和健康对照者(HCs,n=60)。嵌入(L1 正则化逻辑回归)特征选择器用于提取临床相关 miRNA,并进行优化以用于临床应用。

结果

当考虑所有可用 miRNA 时(作为基准),LR 模型选择了多达 5 个 miRNA(称为 LR-5 模型),该模型在测试数据中可以将 MDD 患者与 HCs 区分开来,AUC 为 0.81。与基准相比,该 LR 模型的分类能力(AUC=0.75)适中,可解释性(特征数量=5)和稳定性(ϕ̂Z=0.55)相对较高,是最佳模型。我们模型中排名最高的 miRNA 与涉及免疫系统细胞因子信号、reelin 信号通路、程序性细胞死亡和细胞应激反应的 MDD 途径有关。

结论

基于 ML 设计因素进行优化的 LR-5 模型可能会为开发稳健且可临床应用的 MDD 诊断工具提供参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验