Suppr超能文献

机器学习分析重度抑郁症血液 microRNA 数据:用于生物标志物发现的病例对照研究。

Machine Learning Analysis of Blood microRNA Data in Major Depression: A Case-Control Study for Biomarker Discovery.

机构信息

Department of Human Genetics, McGill University, Montreal, QC, Canada.

Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada.

出版信息

Int J Neuropsychopharmacol. 2020 Nov 26;23(8):505-510. doi: 10.1093/ijnp/pyaa029.

Abstract

BACKGROUND

There is a lack of reliable biomarkers for major depressive disorder (MDD) in clinical practice. However, several studies have shown an association between alterations in microRNA levels and MDD, albeit none of them has taken advantage of machine learning (ML).

METHOD

Supervised and unsupervised ML were applied to blood microRNA expression profiles from a MDD case-control dataset (n = 168) to distinguish between (1) case vs control status, (2) MDD severity levels defined based on the Montgomery-Asberg Depression Rating Scale, and (3) antidepressant responders vs nonresponders.

RESULTS

MDD cases were distinguishable from healthy controls with an area-under-the receiver-operating characteristic curve (AUC) of 0.97 on testing data. High- vs low-severity cases were distinguishable with an AUC of 0.63. Unsupervised clustering of patients, before supervised ML analysis of each cluster for MDD severity, improved the performance of the classifiers (AUC of 0.70 for cluster 1 and 0.76 for cluster 2). Antidepressant responders could not be successfully separated from nonresponders, even after patient stratification by unsupervised clustering. However, permutation testing of the top microRNA, identified by the ML model trained to distinguish responders vs nonresponders in each of the 2 clusters, showed an association with antidepressant response. Each of these microRNA markers was only significant when comparing responders vs nonresponders of the corresponding cluster, but not using the heterogeneous unclustered patient set.

CONCLUSIONS

Supervised and unsupervised ML analysis of microRNA may lead to robust biomarkers for monitoring clinical evolution and for more timely assessment of treatment in MDD patients.

摘要

背景

在临床实践中,缺乏可靠的重度抑郁症(MDD)生物标志物。然而,有几项研究表明 microRNA 水平的改变与 MDD 之间存在关联,尽管其中没有一项利用机器学习(ML)。

方法

将监督和无监督 ML 应用于 MDD 病例对照数据集(n = 168)的血液 microRNA 表达谱,以区分(1)病例与对照状态,(2)基于蒙哥马利-阿斯伯格抑郁评定量表定义的 MDD 严重程度水平,以及(3)抗抑郁药应答者与非应答者。

结果

在测试数据中,MDD 病例与健康对照者的区别可通过受试者工作特征曲线下面积(AUC)为 0.97。高严重程度病例与低严重程度病例的区别 AUC 为 0.63。在对每个聚类进行 MDD 严重程度的监督 ML 分析之前,对患者进行无监督聚类可提高分类器的性能(聚类 1 的 AUC 为 0.70,聚类 2 的 AUC 为 0.76)。即使在对无监督聚类的患者进行分层后,也无法成功将抗抑郁药应答者与非应答者区分开来。然而,通过对每个聚类中用于区分应答者与非应答者的 ML 模型进行的微 RNA 排列测试,显示出与抗抑郁反应相关。这些微 RNA 标记物中的每一个仅在比较相应聚类中的应答者与非应答者时才有意义,而不是使用异质的未聚类患者组。

结论

对 microRNA 进行监督和无监督 ML 分析可能会为监测临床进展和更及时评估 MDD 患者的治疗提供可靠的生物标志物。

相似文献

引用本文的文献

5
Optimizing the predictive power of depression screenings using machine learning.利用机器学习优化抑郁症筛查的预测能力。
Digit Health. 2023 Aug 29;9:20552076231194939. doi: 10.1177/20552076231194939. eCollection 2023 Jan-Dec.
8
Can (immune and other) gene expression help us to treat depression?(免疫及其他)基因表达能帮助我们治疗抑郁症吗?
Brain Behav Immun Health. 2021 Aug 10;16:100323. doi: 10.1016/j.bbih.2021.100323. eCollection 2021 Oct.
9
MicroRNAs, Multiple Sclerosis, and Depression.微小 RNA、多发性硬化症和抑郁症。
Int J Mol Sci. 2021 Jul 21;22(15):7802. doi: 10.3390/ijms22157802.

本文引用的文献

6
Machine Learning Approaches for Clinical Psychology and Psychiatry.机器学习在临床心理学和精神病学中的应用。
Annu Rev Clin Psychol. 2018 May 7;14:91-118. doi: 10.1146/annurev-clinpsy-032816-045037. Epub 2018 Jan 29.
9
Brain Reward Circuits in Morphine Addiction.吗啡成瘾中的脑奖赏回路
Mol Cells. 2016 Sep;39(9):645-53. doi: 10.14348/molcells.2016.0137. Epub 2016 Aug 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验