Department of Human Genetics, McGill University, Montreal, QC, Canada.
Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada.
Int J Neuropsychopharmacol. 2020 Nov 26;23(8):505-510. doi: 10.1093/ijnp/pyaa029.
There is a lack of reliable biomarkers for major depressive disorder (MDD) in clinical practice. However, several studies have shown an association between alterations in microRNA levels and MDD, albeit none of them has taken advantage of machine learning (ML).
Supervised and unsupervised ML were applied to blood microRNA expression profiles from a MDD case-control dataset (n = 168) to distinguish between (1) case vs control status, (2) MDD severity levels defined based on the Montgomery-Asberg Depression Rating Scale, and (3) antidepressant responders vs nonresponders.
MDD cases were distinguishable from healthy controls with an area-under-the receiver-operating characteristic curve (AUC) of 0.97 on testing data. High- vs low-severity cases were distinguishable with an AUC of 0.63. Unsupervised clustering of patients, before supervised ML analysis of each cluster for MDD severity, improved the performance of the classifiers (AUC of 0.70 for cluster 1 and 0.76 for cluster 2). Antidepressant responders could not be successfully separated from nonresponders, even after patient stratification by unsupervised clustering. However, permutation testing of the top microRNA, identified by the ML model trained to distinguish responders vs nonresponders in each of the 2 clusters, showed an association with antidepressant response. Each of these microRNA markers was only significant when comparing responders vs nonresponders of the corresponding cluster, but not using the heterogeneous unclustered patient set.
Supervised and unsupervised ML analysis of microRNA may lead to robust biomarkers for monitoring clinical evolution and for more timely assessment of treatment in MDD patients.
在临床实践中,缺乏可靠的重度抑郁症(MDD)生物标志物。然而,有几项研究表明 microRNA 水平的改变与 MDD 之间存在关联,尽管其中没有一项利用机器学习(ML)。
将监督和无监督 ML 应用于 MDD 病例对照数据集(n = 168)的血液 microRNA 表达谱,以区分(1)病例与对照状态,(2)基于蒙哥马利-阿斯伯格抑郁评定量表定义的 MDD 严重程度水平,以及(3)抗抑郁药应答者与非应答者。
在测试数据中,MDD 病例与健康对照者的区别可通过受试者工作特征曲线下面积(AUC)为 0.97。高严重程度病例与低严重程度病例的区别 AUC 为 0.63。在对每个聚类进行 MDD 严重程度的监督 ML 分析之前,对患者进行无监督聚类可提高分类器的性能(聚类 1 的 AUC 为 0.70,聚类 2 的 AUC 为 0.76)。即使在对无监督聚类的患者进行分层后,也无法成功将抗抑郁药应答者与非应答者区分开来。然而,通过对每个聚类中用于区分应答者与非应答者的 ML 模型进行的微 RNA 排列测试,显示出与抗抑郁反应相关。这些微 RNA 标记物中的每一个仅在比较相应聚类中的应答者与非应答者时才有意义,而不是使用异质的未聚类患者组。
对 microRNA 进行监督和无监督 ML 分析可能会为监测临床进展和更及时评估 MDD 患者的治疗提供可靠的生物标志物。