Suppr超能文献

基于深度学习的计算机断层血管造影颈动脉斑块全自动筛查:一项多中心研究。

Deep learning-based fully automatic screening of carotid artery plaques in computed tomography angiography: a multicenter study.

机构信息

Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu, 215004, China.

Institute of Advanced Research, Infervision Medical Technology Co., Beijing, 18 / f, Seat E, Ocean International Center, Chaoyang District, Beijing, CN, 100025, China.

出版信息

Clin Radiol. 2024 Aug;79(8):e994-e1002. doi: 10.1016/j.crad.2024.04.015. Epub 2024 May 6.

Abstract

AIM

To develop and validate a deep learning (DL) algorithm for the automated detection and classification of carotid artery plaques (CAPs) on computed tomography angiography (CTA) images.

MATERIALS AND METHODS

This retrospective study enrolled 400 patients (300 in the Center Ⅰ and 100 in Ⅱ). Three radiologists co-labeled CAPs, and their revised calcification status (noncalcified, mixed, and calcified) was regarded as ground truth. Center Ⅰ patients were randomly divided into training and internal validation datasets, while Center Ⅱ patients served as the external validation dataset. Carotid artery regions were segmented using a modified 3D-UNet network, followed by CAPs detection and classification using a ResUNet-based architecture in a two-step DL system. The DL model's detection and classification performance were evaluated on the validation dataset using precision-recall curve, free-response receiver operating characteristic (fROC) curve, Cohen's kappa, and ROC curve analysis.

RESULTS

The DL model had achieved 83.4% sensitivity at 3.0 false positives (FPs)/CTA scan in internal validation and 78.9% in external validation. F1-scores were 0.764 and 0.769 at the optimal threshold, and area under fROC curves were 0.756 and 0.738, respectively, indicating good overall accuracy for CAP detection. The DL model also showed good performance for the ternary classification of CAPs, with Cohen's kappa achieved 0.728 and 0.703 in both validation datasets.

CONCLUSION

This study demonstrated the feasibility of using a fully automated DL-based algorithm for the detection and ternary classification of CAPs, which could be helpful for the workloads of radiologists.

摘要

目的

开发并验证一种基于深度学习(DL)的算法,用于自动检测和分类计算机断层血管造影(CTA)图像上的颈动脉斑块(CAP)。

材料和方法

本回顾性研究纳入了 400 名患者(中心Ⅰ 300 名,中心Ⅱ 100 名)。三位放射科医生共同对 CAP 进行标记,将其修订后的钙化状态(非钙化、混合和钙化)视为金标准。中心Ⅰ的患者被随机分为训练集和内部验证数据集,而中心Ⅱ的患者则作为外部验证数据集。使用改良的 3D-UNet 网络对颈动脉区域进行分割,然后使用基于 ResUNet 的架构在两步 DL 系统中进行 CAP 检测和分类。使用精确召回曲线、自由响应接受者操作特征(fROC)曲线、Cohen's kappa 和 ROC 曲线分析在验证数据集上评估 DL 模型的检测和分类性能。

结果

在内部验证中,DL 模型在 3.0 个假阳性(FP)/CTA 扫描时达到了 83.4%的敏感性,在外部验证中达到了 78.9%。在最优阈值下,F1 分数分别为 0.764 和 0.769,fROC 曲线下面积分别为 0.756 和 0.738,表明 CAP 检测具有较好的整体准确性。DL 模型在 CAP 的三分类中也表现出良好的性能,在两个验证数据集中,Cohen's kappa 分别达到了 0.728 和 0.703。

结论

本研究证明了使用基于全自动 DL 的算法来检测和分类 CAP 的可行性,这可能有助于减轻放射科医生的工作负荷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验