斑块视觉变换器(PlaqueViT):一种用于冠状动脉计算机断层扫描血管造影中全自动血管和斑块分割的视觉变换器模型。

PlaqueViT: a vision transformer model for fully automatic vessel and plaque segmentation in coronary computed tomography angiography.

作者信息

Alvén Jennifer, Petersen Richard, Hagerman David, Sandstedt Mårten, Kitslaar Pieter, Bergström Göran, Fagman Erika, Hjelmgren Ola

机构信息

Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.

Department of Radiology in Linköping, Linköping University, Linköping, Sweden.

出版信息

Eur Radiol. 2025 Feb 5. doi: 10.1007/s00330-025-11410-w.

Abstract

OBJECTIVES

To develop and evaluate a deep learning model for segmentation of the coronary artery vessels and coronary plaques in coronary computed tomography angiography (CCTA).

MATERIALS AND METHODS

CCTA image data from the Swedish CardioPulmonary BioImage Study (SCAPIS) was used for model development (n = 463 subjects) and testing (n = 123) and for an interobserver study (n = 65). A dataset from Linköping University Hospital (n = 28) was used for external validation. The model's ability to detect coronary artery disease (CAD) was tested in a separate SCAPIS dataset (n = 684). A deep ensemble (k = 6) of a customized 3D vision transformer model was used for voxelwise classification. The Dice coefficient, the average surface distance, Pearson's correlation coefficient, analysis of segmented volumes by intraclass correlation coefficient (ICC), and agreement (sensitivity and specificity) were used to analyze model performance.

RESULTS

PlaqueViT segmented coronary plaques with a Dice coefficient = 0.55, an average surface distance = 0.98 mm and ICC = 0.93 versus an expert reader. In the interobserver study, PlaqueViT performed as well as the expert reader (Dice coefficient = 0.51 and 0.50, average surface distance = 1.31 and 1.15 mm, ICC = 0.97 and 0.98, respectively). PlaqueViT achieved 88% agreement (sensitivity 97%, specificity 76%) in detecting any coronary plaque in the test dataset (n = 123) and 89% agreement (sensitivity 95%, specificity 83%) in the CAD detection dataset (n = 684).

CONCLUSION

We developed a deep learning model for fully automatic plaque detection and segmentation that identifies and delineates coronary plaques and the arterial lumen with similar performance as an experienced reader.

KEY POINTS

Question A tool for fully automatic and voxelwise segmentation of coronary plaques in coronary CTA (CCTA) is important for both clinical and research usage of the CCTA examination. Findings Segmentation of coronary artery plaques by PlaqueViT was comparable to an expert reader's performance. Clinical relevance This novel, fully automatic deep learning model for voxelwise segmentation of coronary plaques in CCTA is highly relevant for large population studies such as the Swedish CardioPulmonary BioImage Study.

摘要

目的

开发并评估一种用于在冠状动脉计算机断层扫描血管造影(CCTA)中分割冠状动脉血管和冠状动脉斑块的深度学习模型。

材料与方法

来自瑞典心肺生物图像研究(SCAPIS)的CCTA图像数据用于模型开发(n = 463名受试者)、测试(n = 123)以及观察者间研究(n = 65)。林雪平大学医院的一个数据集(n = 28)用于外部验证。该模型检测冠状动脉疾病(CAD)的能力在一个单独的SCAPIS数据集中进行测试(n = 684)。一个定制的3D视觉Transformer模型的深度集成(k = 6)用于逐体素分类。使用Dice系数、平均表面距离、Pearson相关系数、通过组内相关系数(ICC)分析分割体积以及一致性(敏感性和特异性)来分析模型性能。

结果

与专家阅片者相比,PlaqueViT分割冠状动脉斑块的Dice系数为0.55,平均表面距离为0.98毫米,ICC为0.93。在观察者间研究中,PlaqueViT的表现与专家阅片者相当(Dice系数分别为0.51和0.50,平均表面距离分别为1.31和1.15毫米,ICC分别为0.97和0.98)。PlaqueViT在测试数据集(n = 123)中检测任何冠状动脉斑块时达到了88%的一致性(敏感性97%,特异性76%),在CAD检测数据集(n = 684)中达到了89%的一致性(敏感性95%,特异性83%)。

结论

我们开发了一种用于全自动斑块检测和分割的深度学习模型,该模型识别并描绘冠状动脉斑块和动脉管腔的性能与经验丰富的阅片者相似。

关键点

问题 一种用于冠状动脉CTA(CCTA)中冠状动脉斑块全自动和逐体素分割的工具对于CCTA检查的临床和研究应用都很重要。发现 PlaqueViT对冠状动脉斑块的分割与专家阅片者的表现相当。临床相关性 这种用于CCTA中冠状动脉斑块逐体素分割的新型全自动深度学习模型与瑞典心肺生物图像研究等大型人群研究高度相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索