使用CT血管造影术进行颅内动脉瘤检测、分割和形态学分析的集成深度学习模型
Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography.
作者信息
Yang Yi, Chang Zhenyao, Nie Xin, Wu Jun, Chen Jingang, Liu Weiqi, He Hongwei, Wang Shuo, Zhu Chengcheng, Liu Qingyuan
机构信息
From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.).
出版信息
Radiol Artif Intell. 2025 Jan;7(1):e240017. doi: 10.1148/ryai.240017.
Purpose To develop a deep learning model for the morphologic measurement of unruptured intracranial aneurysms (UIAs) based on CT angiography (CTA) data and validate its performance using a multicenter dataset. Materials and Methods In this retrospective study, patients with CTA examinations, including those with and without UIAs, in a tertiary referral hospital from February 2018 to February 2021 were included as the training dataset. Patients with UIAs who underwent CTA at multiple centers between April 2021 and December 2022 were included as the multicenter external testing set. An integrated deep learning (IDL) model was developed for UIA detection, segmentation, and morphologic measurement using an nnU-Net algorithm. Model performance was evaluated using the Dice similarity coefficient (DSC) and intraclass correlation coefficient (ICC), with measurements by senior radiologists serving as the reference standard. The ability of the IDL model to improve performance of junior radiologists in measuring morphologic UIA features was assessed. Results The study included 1182 patients with UIAs and 578 controls without UIAs as the training dataset (median age, 55 years [IQR, 47-62 years], 1012 [57.5%] female) and 535 patients with UIAs as the multicenter external testing set (median age, 57 years [IQR, 50-63 years], 353 [66.0%] female). The IDL model achieved 97% accuracy in detecting UIAs and achieved a DSC of 0.90 (95% CI: 0.88, 0.92) for UIA segmentation. Model-based morphologic measurements showed good agreement with reference standard measurements (all ICCs > 0.85). Within the multicenter external testing set, the IDL model also showed agreement with reference standard measurements (all ICCs > 0.80). Junior radiologists assisted by the IDL model showed significantly improved performance in measuring UIA size (ICC improved from 0.88 [95% CI: 0.80, 0.92] to 0.96 [95% CI: 0.92, 0.97], < .001). Conclusion The developed integrated deep learning model using CTA data showed good performance in UIA detection, segmentation, and morphologic measurement and may be used to assist less experienced radiologists in morphologic analysis of UIAs. Segmentation, CT Angiography, Head/Neck, Aneurysms, Comparative Studies © RSNA, 2024 See also the commentary by Wang in this issue.
目的 基于CT血管造影(CTA)数据开发一种用于未破裂颅内动脉瘤(UIA)形态学测量的深度学习模型,并使用多中心数据集验证其性能。材料与方法 在这项回顾性研究中,将2018年2月至2021年2月在一家三级转诊医院接受CTA检查的患者(包括有和没有UIA的患者)纳入训练数据集。将2021年4月至2022年12月期间在多个中心接受CTA检查的UIA患者纳入多中心外部测试集。使用nnU-Net算法开发了一种用于UIA检测、分割和形态学测量的集成深度学习(IDL)模型。使用Dice相似系数(DSC)和组内相关系数(ICC)评估模型性能,以高级放射科医生的测量结果作为参考标准。评估IDL模型在改善初级放射科医生测量UIA形态学特征性能方面的能力。结果 该研究纳入1182例UIA患者和578例无UIA的对照作为训练数据集(中位年龄55岁[四分位间距,47 - 62岁],1012例[57.5%]为女性),以及535例UIA患者作为多中心外部测试集(中位年龄57岁[四分位间距,50 - 63岁],353例[66.0%]为女性)。IDL模型检测UIA的准确率达到97%,UIA分割的DSC为0.90(95%CI:0.88,0.92)。基于模型的形态学测量结果与参考标准测量结果显示出良好的一致性(所有ICC>0.85)。在多中心外部测试集中,IDL模型也与参考标准测量结果显示出一致性(所有ICC>0.80)。在IDL模型辅助下,初级放射科医生在测量UIA大小方面的性能有显著改善(ICC从0.88[95%CI:0.80,0.92]提高到0.96[95%CI:0.92,0.97],P<.001)。结论 使用CTA数据开发的集成深度学习模型在UIA检测、分割和形态学测量方面表现出良好性能,可用于辅助经验不足的放射科医生进行UIA的形态学分析。分割、CT血管造影、头/颈、动脉瘤、对比研究 ©RSNA,2024 另见本期Wang的评论。
相似文献
引用本文的文献
本文引用的文献
N Engl J Med. 2023-5-25
Radiol Artif Intell. 2020-3-25