Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
China National Botanical Garden, Beijing, 100093, China.
Nat Commun. 2024 May 24;15(1):4437. doi: 10.1038/s41467-024-48789-x.
Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Q to a carotenoid (car) S state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.
光合生物已经进化出一种依赖能量的必需猝灭(qE)机制,以避免强光造成的任何致命损伤。虽然 qE 的触发机制已经得到很好的解决,但猝灭剂的候选物经常存在争议。这种理解上的不足是由于使用瞬态吸收技术测量完整细胞存在巨大困难。在这里,我们使用保留生理 qE 功能的绿色藻类衣藻的微细胞碎片进行了飞秒泵浦探针测量,以表征这种光物理反应。结合动力学建模,我们证明了从叶绿素 a(Chl a)Q 到类胡萝卜素(car)S 态的超快激发能量转移(EET)途径的存在,因此提出这种类胡萝卜素,可能是叶黄素 1,是猝灭剂。这项工作为高级光谱研究提供了易于制备的 qE 活性类囊体膜系统,并证明了 qE 的能量耗散途径从绿藻到陆地植物是进化保守的。
Proc Natl Acad Sci U S A. 2018-3-19
Proc Natl Acad Sci U S A. 2013-5-28
Proc Natl Acad Sci U S A. 2019-2-19
J Phys Chem Lett. 2019-5-16
Biochim Biophys Acta Bioenerg. 2017-3-1
J Phys Chem Lett. 2023-9-7
Front Plant Sci. 2021-12-1
Nat Commun. 2021-12-9
Phys Chem Chem Phys. 2021-9-15