文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

LHCSR 蛋白之间的相互作用和状态转变控制了在光波动期间衣藻中的 NPQ 反应。

Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations.

机构信息

Department of Chemistry, University of California, Berkeley, California, USA.

Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory, Berkeley, California, USA.

出版信息

Plant Cell Environ. 2022 Aug;45(8):2428-2445. doi: 10.1111/pce.14372. Epub 2022 Jun 21.


DOI:10.1111/pce.14372
PMID:35678230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9540987/
Abstract

Photosynthetic organisms use sunlight as the primary energy source to fix CO . However, in nature, light energy is highly variable, reaching levels of saturation for periods ranging from milliseconds to hours. In the green microalga Chlamydomonas reinhardtii, safe dissipation of excess light energy by nonphotochemical quenching (NPQ) is mediated by light-harvesting complex stress-related (LHCSR) proteins and redistribution of light-harvesting antennae between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to NPQ under fluctuating light conditions remain unknown. Here, by monitoring NPQ in intact cells throughout high light/dark cycles of various illumination periods, we find that the dynamics of NPQ depend on the timescales of light fluctuations. We show that LHCSRs play a major role during the light phases of light fluctuations and describe their role in growth under rapid light fluctuations. We further reveal an activation of NPQ during the dark phases of all high light/dark cycles and show that this phenomenon arises from state transition. Finally, we show that LHCSRs and state transition synergistically cooperate to enable NPQ response during light fluctuations. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.

摘要

光合生物利用阳光作为主要能源来固定 CO 。然而,在自然界中,光能变化很大,从毫秒到小时不等,达到饱和水平。在绿藻莱茵衣藻中,通过非光化学猝灭(NPQ)来安全耗散多余的光能,这是由光捕获复合物应激相关(LHCSR)蛋白和光系统之间的光捕获天线的重新分配(状态转换)介导的。尽管 NPQ 所涉及的每个组成部分都已经有文献记载,但它们在波动光照条件下对 NPQ 的相对贡献仍然未知。在这里,通过在各种光照周期的高光/暗光循环中监测完整细胞中的 NPQ,我们发现 NPQ 的动力学取决于光波动的时间尺度。我们表明 LHCSRs 在光波动的光相期间起主要作用,并描述了它们在快速光波动下生长的作用。我们进一步揭示了在所有高光/暗光循环的暗相期间 NPQ 的激活,并表明这种现象源自状态转换。最后,我们表明 LHCSRs 和状态转换协同合作,使 NPQ 能够在光波动期间响应。这些结果强调了在光波动下光保护的动态功能,并为系统地表征光合作用对不断变化的光环境的响应开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/0489e605cbca/PCE-45-2428-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/f3e7a261ca48/PCE-45-2428-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/945b1da59968/PCE-45-2428-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/44118597fdcc/PCE-45-2428-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/93f10783132a/PCE-45-2428-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/a9abaf4841f5/PCE-45-2428-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/1d9efb6b07e7/PCE-45-2428-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/a046a2950568/PCE-45-2428-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/0489e605cbca/PCE-45-2428-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/f3e7a261ca48/PCE-45-2428-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/945b1da59968/PCE-45-2428-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/44118597fdcc/PCE-45-2428-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/93f10783132a/PCE-45-2428-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/a9abaf4841f5/PCE-45-2428-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/1d9efb6b07e7/PCE-45-2428-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/a046a2950568/PCE-45-2428-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c6e/9540987/0489e605cbca/PCE-45-2428-g007.jpg

相似文献

[1]
Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations.

Plant Cell Environ. 2022-8

[2]
LHCSR3 is a nonphotochemical quencher of both photosystems in .

Proc Natl Acad Sci U S A. 2019-2-19

[3]
Exhibits De Facto Constitutive NPQ Capacity in Physiologically Relevant Conditions.

Plant Physiol. 2019-10-25

[4]
Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of Chlamydomonas reinhardtii.

Proc Natl Acad Sci U S A. 2012-5-14

[5]
Overexpression of LHCSR and PsbS enhance light tolerance in Chlamydomonas reinhardtii.

J Photochem Photobiol B. 2023-7

[6]
Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii.

Plant Cell Environ. 2019-12-8

[7]
pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in .

Proc Natl Acad Sci U S A. 2019-4-8

[8]
Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas.

Plant Physiol. 2023-9-22

[9]
Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light.

Plant Physiol. 2016-8

[10]
UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

Proc Natl Acad Sci U S A. 2016-12-20

引用本文的文献

[1]
Subtropical lichens from the Afromontane can display rapid photosynthetic acclimation to simulated climate change.

Photosynthetica. 2025-3-14

[2]
Bestrophin-like protein 4 is involved in photosynthetic acclimation to light fluctuations in Chlamydomonas.

Plant Physiol. 2024-12-2

[3]
Lighting the way: Compelling open questions in photosynthesis research.

Plant Cell. 2024-10-3

[4]
Ultrafast energy quenching mechanism of LHCSR3-dependent photoprotection in Chlamydomonas.

Nat Commun. 2024-5-24

[5]
Photoautotrophic cultivation of a Chlamydomonas reinhardtii mutant with zeaxanthin as the sole xanthophyll.

Biotechnol Biofuels Bioprod. 2024-3-14

[6]
Light Influences the Growth, Pigment Synthesis, Photosynthesis Capacity, and Antioxidant Activities in .

Scientifica (Cairo). 2024-1-23

[7]
Reversible protein phosphorylation in higher plants: focus on state transitions.

Biophys Rev. 2023-8-29

[8]
Plastoquinone pool redox state and control of state transitions in Chlamydomonas reinhardtii in darkness and under illumination.

Photosynth Res. 2023-1

本文引用的文献

[1]
Modelling the pyrenoid-based CO-concentrating mechanism provides insights into its operating principles and a roadmap for its engineering into crops.

Nat Plants. 2022-5

[2]
Alternative photosynthesis pathways drive the algal CO-concentrating mechanism.

Nature. 2022-5

[3]
Molecular origins of induction and loss of photoinhibition-related energy dissipation q.

Sci Adv. 2021-12-24

[4]
Photosynthesis dynamics and regulation sensed in the frequency domain.

Plant Physiol. 2021-10-5

[5]
Light-harvesting complex stress-related proteins play crucial roles in the acclimation of Physcomitrella patens under fluctuating light conditions.

Photosynth Res. 2022-1

[6]
High-Speed Excitation-Spectral Microscopy Uncovers In Situ Rearrangement of Light-Harvesting Apparatus in Chlamydomonas during State Transitions at Submicron Precision.

Plant Cell Physiol. 2021-10-1

[7]
Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in State 2.

Nat Commun. 2021-2-17

[8]
Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from .

Elife. 2021-1-15

[9]
Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures.

J Biotechnol. 2021-2-20

[10]
Chlamydomonas reinhardtii LHCSR1 and LHCSR3 proteins involved in photoprotective non-photochemical quenching have different quenching efficiency and different carotenoid affinity.

Sci Rep. 2020-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索