Suppr超能文献

开发和验证 ICU 转出患者新发功能障碍的早期预测模型。

Development and validation of early prediction models for new-onset functional impairment in patients after being transferred from the ICU.

机构信息

Shantou University Medical College, Shantou, 515000, People's Republic of China.

Department of Nursing, First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China.

出版信息

Sci Rep. 2024 May 24;14(1):11902. doi: 10.1038/s41598-024-62447-8.

Abstract

A significant number of intensive care unit (ICU) survivors experience new-onset functional impairments that impede their activities of daily living (ADL). Currently, no effective assessment tools are available to identify these high-risk patients. This study aims to develop an interpretable machine learning (ML) model for predicting the onset of functional impairment in critically ill patients. Data for this study were sourced from a comprehensive hospital in China, focusing on adult patients admitted to the ICU from August 2022 to August 2023 without prior functional impairments. A least absolute shrinkage and selection operator (LASSO) model was utilized to select predictors for inclusion in the model. Four models, logistic regression, support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost), were constructed and validated. Model performance was assessed using the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Additionally, the DALEX package was employed to enhance the interpretability of the final models. The study ultimately included 1,380 patients, with 684 (49.6%) exhibiting new-onset functional impairment on the seventh day after leaving the ICU. Among the four models evaluated, the SVM model demonstrated the best performance, with an AUC of 0.909, accuracy of 0.838, sensitivity of 0.902, specificity of 0.772, PPV of 0.802, and NPV of 0.886. ML models are reliable tools for predicting new-onset functional impairments in critically ill patients. Notably, the SVM model emerged as the most effective, enabling early identification of patients at high risk and facilitating the implementation of timely interventions to improve ADL.

摘要

大量重症监护病房(ICU)幸存者出现新的功能障碍,影响他们的日常生活活动(ADL)。目前,尚无有效的评估工具来识别这些高危患者。本研究旨在开发一种可解释的机器学习(ML)模型,以预测危重症患者功能障碍的发生。本研究的数据来自中国一家综合性医院,重点关注 2022 年 8 月至 2023 年 8 月期间无先前功能障碍的 ICU 成年患者。使用最小绝对收缩和选择算子(LASSO)模型选择预测因子纳入模型。构建并验证了四种模型,即逻辑回归、支持向量机(SVM)、随机森林(RF)和极端梯度提升(XGBoost)。使用曲线下面积(AUC)、准确性、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)评估模型性能。此外,还使用 DALEX 软件包增强最终模型的可解释性。该研究最终纳入 1380 例患者,其中 684 例(49.6%)在离开 ICU 后的第 7 天出现新的功能障碍。在评估的四种模型中,SVM 模型表现最佳,AUC 为 0.909、准确性为 0.838、敏感性为 0.902、特异性为 0.772、PPV 为 0.802、NPV 为 0.886。ML 模型是预测危重症患者新发性功能障碍的可靠工具。值得注意的是,SVM 模型是最有效的,能够早期识别高风险患者,并有助于实施及时干预以改善 ADL。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50be/11126674/4238a1f50a9e/41598_2024_62447_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验