Suppr超能文献

用于预测重症监护病房中高血压性缺血性或出血性中风患者28天全因院内死亡率的可解释机器学习:一项具有内部和外部交叉验证的多中心回顾性队列研究

Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.

作者信息

Huang Jian, Chen Huaqiao, Deng Jiewen, Liu Xiaozhu, Shu Tingting, Yin Chengliang, Duan Minjie, Fu Li, Wang Kai, Zeng Song

机构信息

Emergency Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

The Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, China.

出版信息

Front Neurol. 2023 Aug 8;14:1185447. doi: 10.3389/fneur.2023.1185447. eCollection 2023.

Abstract

BACKGROUND

Timely and accurate outcome prediction plays a critical role in guiding clinical decisions for hypertensive ischemic or hemorrhagic stroke patients admitted to the ICU. However, interpreting and translating the predictive models into clinical applications are as important as the prediction itself. This study aimed to develop an interpretable machine learning (IML) model that accurately predicts 28-day all-cause mortality in hypertensive ischemic or hemorrhagic stroke patients.

METHODS

A total of 4,274 hypertensive ischemic or hemorrhagic stroke patients admitted to the ICU in the USA from multicenter cohorts were included in this study to develop and validate the IML model. Five machine learning (ML) models were developed, including artificial neural network (ANN), gradient boosting machine (GBM), eXtreme Gradient Boosting (XGBoost), logistic regression (LR), and support vector machine (SVM), to predict mortality using the MIMIC-IV and eICU-CRD database in the USA. Feature selection was performed using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Model performance was evaluated based on the area under the curve (AUC), accuracy, positive predictive value (PPV), and negative predictive value (NPV). The ML model with the best predictive performance was selected for interpretability analysis. Finally, the SHapley Additive exPlanations (SHAP) method was employed to evaluate the risk of all-cause in-hospital mortality among hypertensive ischemic or hemorrhagic stroke patients admitted to the ICU.

RESULTS

The XGBoost model demonstrated the best predictive performance, with the AUC values of 0.822, 0.739, and 0.700 in the training, test, and external cohorts, respectively. The analysis of feature importance revealed that age, ethnicity, white blood cell (WBC), hyperlipidemia, mean corpuscular volume (MCV), glucose, pulse oximeter oxygen saturation (SpO), serum calcium, red blood cell distribution width (RDW), blood urea nitrogen (BUN), and bicarbonate were the 11 most important features. The SHAP plots were employed to interpret the XGBoost model.

CONCLUSIONS

The XGBoost model accurately predicted 28-day all-cause in-hospital mortality among hypertensive ischemic or hemorrhagic stroke patients admitted to the ICU. The SHAP method can provide explicit explanations of personalized risk prediction, which can aid physicians in understanding the model.

摘要

背景

及时准确的预后预测在指导入住重症监护病房(ICU)的高血压性缺血性或出血性中风患者的临床决策中起着关键作用。然而,将预测模型解释并转化为临床应用与预测本身同样重要。本研究旨在开发一种可解释的机器学习(IML)模型,以准确预测高血压性缺血性或出血性中风患者28天全因死亡率。

方法

本研究纳入了美国多中心队列中4274例入住ICU的高血压性缺血性或出血性中风患者,以开发和验证IML模型。使用美国的MIMIC-IV和eICU-CRD数据库,开发了五种机器学习(ML)模型,包括人工神经网络(ANN)、梯度提升机(GBM)、极端梯度提升(XGBoost)、逻辑回归(LR)和支持向量机(SVM),以预测死亡率。使用最小绝对收缩和选择算子(LASSO)算法进行特征选择。基于曲线下面积(AUC)、准确性、阳性预测值(PPV)和阴性预测值(NPV)评估模型性能。选择预测性能最佳的ML模型进行可解释性分析。最后,采用夏普利加性解释(SHAP)方法评估入住ICU的高血压性缺血性或出血性中风患者全因院内死亡风险。

结果

XGBoost模型表现出最佳的预测性能,在训练、测试和外部队列中的AUC值分别为0.822、0.739和0.700。特征重要性分析表明,年龄、种族、白细胞(WBC)、高脂血症、平均红细胞体积(MCV)、血糖、脉搏血氧饱和度(SpO)、血清钙、红细胞分布宽度(RDW)、血尿素氮(BUN)和碳酸氢盐是11个最重要的特征。采用SHAP图来解释XGBoost模型。

结论

XGBoost模型准确预测了入住ICU的高血压性缺血性或出血性中风患者28天全因院内死亡率。SHAP方法可以为个性化风险预测提供明确解释,有助于医生理解该模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2f3/10443100/7f59e80a00ae/fneur-14-1185447-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验