Suppr超能文献

一种用于内镜手术回顾性评估和实时监测的自动视频分析系统(附视频)

An Automated Video Analysis System for Retrospective Assessment and Real-Time Monitoring of Endoscopic Procedures (with Video).

作者信息

Zhu Yan, Du Ling, Fu Pei-Yao, Geng Zi-Han, Zhang Dan-Feng, Chen Wei-Feng, Li Quan-Lin, Zhou Ping-Hong

机构信息

Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.

Shanghai Collaborative Innovation Center of Endoscopy, Shanghai 200032, China.

出版信息

Bioengineering (Basel). 2024 Apr 30;11(5):445. doi: 10.3390/bioengineering11050445.

Abstract

BACKGROUND AND AIMS

Accurate recognition of endoscopic instruments facilitates quantitative evaluation and quality control of endoscopic procedures. However, no relevant research has been reported. In this study, we aimed to develop a computer-assisted system, EndoAdd, for automated endoscopic surgical video analysis based on our dataset of endoscopic instrument images.

METHODS

Large training and validation datasets containing 45,143 images of 10 different endoscopic instruments and a test dataset of 18,375 images collected from several medical centers were used in this research. Annotated image frames were used to train the state-of-the-art object detection model, YOLO-v5, to identify the instruments. Based on the frame-level prediction results, we further developed a hidden Markov model to perform video analysis and generate heatmaps to summarize the videos.

RESULTS

EndoAdd achieved high accuracy (>97%) on the test dataset for all 10 endoscopic instrument types. The mean average accuracy, precision, recall, and F1-score were 99.1%, 92.0%, 88.8%, and 89.3%, respectively. The area under the curve values exceeded 0.94 for all instrument types. Heatmaps of endoscopic procedures were generated for both retrospective and real-time analyses.

CONCLUSIONS

We successfully developed an automated endoscopic video analysis system, EndoAdd, which supports retrospective assessment and real-time monitoring. It can be used for data analysis and quality control of endoscopic procedures in clinical practice.

摘要

背景与目的

准确识别内镜器械有助于对内镜手术进行定量评估和质量控制。然而,尚无相关研究报道。在本研究中,我们旨在基于我们的内镜器械图像数据集开发一种计算机辅助系统EndoAdd,用于自动内镜手术视频分析。

方法

本研究使用了包含10种不同内镜器械的45143张图像的大型训练和验证数据集,以及从几个医疗中心收集的18375张图像的测试数据集。带注释的图像帧用于训练先进的目标检测模型YOLO-v5,以识别器械。基于帧级预测结果,我们进一步开发了一个隐马尔可夫模型来进行视频分析并生成热图以总结视频。

结果

EndoAdd在测试数据集上对所有10种内镜器械类型均实现了高精度(>97%)。平均精度、精确率、召回率和F1分数分别为99.1%、92.0%、88.8%和89.3%。所有器械类型的曲线下面积值均超过0.94。生成了用于回顾性和实时分析的内镜手术热图。

结论

我们成功开发了一种自动内镜视频分析系统EndoAdd,它支持回顾性评估和实时监测。它可用于临床实践中内镜手术的数据分析和质量控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ddb/11118061/bcf90ee3bced/bioengineering-11-00445-g001.jpg

相似文献

2
Dual-stage semantic segmentation of endoscopic surgical instruments.
Med Phys. 2024 Dec;51(12):9125-9137. doi: 10.1002/mp.17397. Epub 2024 Sep 10.
5
Automated artificial intelligence-based phase-recognition system for esophageal endoscopic submucosal dissection (with video).
Gastrointest Endosc. 2024 May;99(5):830-838. doi: 10.1016/j.gie.2023.12.037. Epub 2024 Jan 5.
7
Automated Identification of Key Steps in Robotic-Assisted Radical Prostatectomy Using Artificial Intelligence.
J Urol. 2024 Apr;211(4):575-584. doi: 10.1097/JU.0000000000003845. Epub 2024 Jan 24.
10
A Machine Learning-Based System for Real-Time Polyp Detection (DeFrame): A Retrospective Study.
Front Med (Lausanne). 2022 May 31;9:852553. doi: 10.3389/fmed.2022.852553. eCollection 2022.

本文引用的文献

3
Publication trends of peroral endoscopic myotomy during 2010-2022: a bibliometric analysis.
Ann Transl Med. 2022 Dec;10(23):1272. doi: 10.21037/atm-22-2469.
4
Enhancing MR image segmentation with realistic adversarial data augmentation.
Med Image Anal. 2022 Nov;82:102597. doi: 10.1016/j.media.2022.102597. Epub 2022 Aug 28.
5
Development of Artificial Intelligence for Parathyroid Recognition During Endoscopic Thyroid Surgery.
Laryngoscope. 2022 Dec;132(12):2516-2523. doi: 10.1002/lary.30173. Epub 2022 May 31.
6
Submucosal tunneling cecetomy in a dog: is it applicable for appendectomy in human?
Endoscopy. 2022 Nov;54(11):E668-E669. doi: 10.1055/a-1740-3980. Epub 2022 Feb 15.
7
Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives.
Ann Gastroenterol Surg. 2021 Oct 8;6(1):29-36. doi: 10.1002/ags3.12513. eCollection 2022 Jan.
8
A systematic review on artificial intelligence in robot-assisted surgery.
Int J Surg. 2021 Nov;95:106151. doi: 10.1016/j.ijsu.2021.106151. Epub 2021 Oct 22.
9
Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery?
Sensors (Basel). 2021 Aug 17;21(16):5526. doi: 10.3390/s21165526.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验