Suppr超能文献

使用从内窥镜报告系统中自动收集带注释图像构建的人工智能检测内窥镜图像中的结肠息肉。

Detecting colon polyps in endoscopic images using artificial intelligence constructed with automated collection of annotated images from an endoscopy reporting system.

机构信息

Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan.

Division of Science and Technology for Endoscopy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Chiba, Japan.

出版信息

Dig Endosc. 2022 Jul;34(5):1021-1029. doi: 10.1111/den.14185. Epub 2021 Nov 30.

Abstract

BACKGROUND

Artificial intelligence (AI) has made considerable progress in image recognition, especially in the analysis of endoscopic images. The availability of large-scale annotated datasets has contributed to the recent progress in this field. Datasets of high-quality annotated endoscopic images are widely available, particularly in Japan. A system for collecting annotated data reported daily could aid in accumulating a significant number of high-quality annotated datasets.

AIM

We assessed the validity of using daily annotated endoscopic images in a constructed reporting system for a prototype AI model for polyp detection.

METHODS

We constructed an automated collection system for daily annotated datasets from an endoscopy reporting system. The key images were selected and annotated for each case only during daily practice, not to be performed retrospectively. We automatically extracted annotated endoscopic images of diminutive colon polyps that had been diagnosed (study period March-September 2018) using the keywords of diagnostic information, and additionally collect the normal colon images. The collected dataset was devised into training and validation to build and evaluate the AI system. The detection model was developed using a deep learning algorithm, RetinaNet.

RESULTS

The automated system collected endoscopic images (47,391) from colonoscopies (745), and extracted key colon polyp images (1356) with localized annotations. The sensitivity, specificity, and accuracy of our AI model were 97.0%, 97.7%, and 97.3% (n = 300), respectively.

CONCLUSION

The automated system enabled the development of a high-performance colon polyp detector using images in endoscopy reporting system without the efforts of retrospective annotation works.

摘要

背景

人工智能(AI)在图像识别方面取得了重大进展,尤其是在内窥镜图像分析方面。大规模标注数据集的可用性为该领域的近期进展做出了贡献。高质量标注的内窥镜图像数据集在日本等国家广泛可用。一个每天报告标注数据的系统可以帮助积累大量高质量的标注数据集。

目的

我们评估了在用于息肉检测的人工智能模型原型的构建报告系统中使用日常标注内窥镜图像的有效性。

方法

我们构建了一个自动采集系统,用于从内窥镜报告系统中获取日常标注数据集。仅在日常实践中为每个病例选择和标注关键图像,而不是进行回顾性标注。我们使用诊断信息的关键字自动提取已诊断的微小结肠息肉的标注内窥镜图像,并额外收集正常结肠图像。所收集的数据集被设计为训练和验证,以构建和评估人工智能系统。检测模型使用深度学习算法 RetinaNet 开发。

结果

自动化系统从结肠镜检查(745 次)中收集了内窥镜图像(47391 张),并提取了带有局部标注的关键结肠息肉图像(1356 张)。我们的人工智能模型的灵敏度、特异性和准确率分别为 97.0%、97.7%和 97.3%(n=300)。

结论

自动化系统无需进行回顾性标注工作,即可使用内窥镜报告系统中的图像开发高性能的结肠息肉检测器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验