Zhu Yan, Zhang Dan-Feng, Wu Hui-Li, Fu Pei-Yao, Feng Li, Zhuang Kun, Geng Zi-Han, Li Kun-Kun, Zhang Xiao-Hong, Zhu Bo-Qun, Qin Wen-Zheng, Lin Sheng-Li, Zhang Zhen, Chen Tian-Yin, Huang Yuan, Xu Xiao-Yue, Liu Jing-Zheng, Wang Shuo, Zhang Wei, Li Quan-Lin, Zhou Ping-Hong
Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China.
NPJ Digit Med. 2023 Mar 14;6(1):41. doi: 10.1038/s41746-023-00786-y.
Optimal bowel preparation is a prerequisite for a successful colonoscopy; however, the rate of inadequate bowel preparation remains relatively high. In this study, we establish a smartphone app that assesses patient bowel preparation using an artificial intelligence (AI)-based prediction system trained on labeled photographs of feces in the toilet and evaluate its impact on bowel preparation quality in colonoscopy outpatients. We conduct a prospective, single-masked, multicenter randomized clinical trial, enrolling outpatients who own a smartphone and are scheduled for a colonoscopy. We screen 578 eligible patients and randomize 524 in a 1:1 ratio to the control or AI-driven app group for bowel preparation. The study endpoints are the percentage of patients with adequate bowel preparation and the total BBPS score, compliance with dietary restrictions and purgative instructions, polyp detection rate, and adenoma detection rate (secondary). The prediction system has an accuracy of 95.15%, a specificity of 97.25%, and an area under the curve of 0.98 in the test dataset. In the full analysis set (n = 500), adequate preparation is significantly higher in the AI-driven app group (88.54 vs. 65.59%; P < 0.001). The mean BBPS score is 6.74 ± 1.25 in the AI-driven app group and 5.97 ± 1.81 in the control group (P < 0.001). The rates of compliance with dietary restrictions (93.68 vs. 83.81%, P = 0.001) and purgative instructions (96.05 vs. 84.62%, P < 0.001) are significantly higher in the AI-driven app group, as is the rate of additional purgative intake (26.88 vs. 17.41%, P = 0.011). Thus, our AI-driven smartphone app significantly improves the quality of bowel preparation and patient compliance.
最佳的肠道准备是成功进行结肠镜检查的前提条件;然而,肠道准备不充分的发生率仍然相对较高。在本研究中,我们开发了一款智能手机应用程序,该程序使用基于人工智能(AI)的预测系统来评估患者的肠道准备情况,该系统通过对马桶内粪便的标记照片进行训练,并评估其对结肠镜门诊患者肠道准备质量的影响。我们进行了一项前瞻性、单盲、多中心随机临床试验,招募拥有智能手机且计划进行结肠镜检查的门诊患者。我们筛选了578名符合条件的患者,并将524名患者以1:1的比例随机分为对照组或AI驱动应用程序组进行肠道准备。研究终点包括肠道准备充分的患者百分比和总波士顿肠道准备评分(BBPS)、饮食限制和泻药使用说明的依从性、息肉检出率以及腺瘤检出率(次要终点)。在测试数据集中,预测系统的准确率为95.15%,特异性为97.25%,曲线下面积为0.98。在全分析集(n = 500)中,AI驱动应用程序组的充分准备率显著更高(88.54%对65.59%;P < 0.001)。AI驱动应用程序组的平均BBPS评分为6.74 ± 1.25,对照组为5.97 ± 1.81(P < 0.001)。AI驱动应用程序组在饮食限制依从率(93.68%对83.81%,P = 0.001)和泻药使用说明依从率(96.05%对84.62%,P < 0.001)方面显著更高,额外服用泻药的比例也是如此(26.88%对17.41%,P = 0.011)。因此,我们的AI驱动智能手机应用程序显著提高了肠道准备质量和患者依从性。