Suppr超能文献

血管生成中机械力相互作用的计算洞察

Computational Insights into the Interplay of Mechanical Forces in Angiogenesis.

作者信息

Guerra Ana, Belinha Jorge, Salgado Christiane, Monteiro Fernando Jorge, Natal Jorge Renato

机构信息

INEGI-Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal.

ISEP-Instituto Superior de Engenharia do Porto, Departamento de Engenharia Mecânica, Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.

出版信息

Biomedicines. 2024 May 9;12(5):1045. doi: 10.3390/biomedicines12051045.

Abstract

This study employs a meshless computational model to investigate the impacts of compression and traction on angiogenesis, exploring their effects on vascular endothelial growth factor (VEGF) diffusion and subsequent capillary network formation. Three distinct initial domain geometries were defined to simulate variations in endothelial cell sprouting and VEGF release. Compression and traction were applied, and the ensuing effects on VEGF diffusion coefficients were analysed. Compression promoted angiogenesis, increasing capillary network density. The reduction in the VEGF diffusion coefficient under compression altered VEGF concentration, impacting endothelial cell migration patterns. The findings were consistent across diverse simulation scenarios, demonstrating the robust influence of compression on angiogenesis. This computational study enhances our understanding of the intricate interplay between mechanical forces and angiogenesis. Compression emerges as an effective mediator of angiogenesis, influencing VEGF diffusion and vascular pattern. These insights may contribute to innovative therapeutic strategies for angiogenesis-related disorders, fostering tissue regeneration and addressing diseases where angiogenesis is crucial.

摘要

本研究采用无网格计算模型来研究压缩和牵引对血管生成的影响,探讨它们对血管内皮生长因子(VEGF)扩散及随后的毛细血管网络形成的作用。定义了三种不同的初始域几何形状,以模拟内皮细胞发芽和VEGF释放的变化。施加了压缩和牵引,并分析了其对VEGF扩散系数的后续影响。压缩促进了血管生成,增加了毛细血管网络密度。压缩下VEGF扩散系数的降低改变了VEGF浓度,影响了内皮细胞迁移模式。在不同的模拟场景中结果都是一致的,表明压缩对血管生成有强大的影响。这项计算研究增进了我们对机械力与血管生成之间复杂相互作用的理解。压缩成为血管生成的有效调节因子,影响VEGF扩散和血管模式。这些见解可能有助于为血管生成相关疾病制定创新治疗策略,促进组织再生并解决血管生成至关重要的疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1de/11117778/92d0428522d5/biomedicines-12-01045-g001.jpg

相似文献

1
Computational Insights into the Interplay of Mechanical Forces in Angiogenesis.
Biomedicines. 2024 May 9;12(5):1045. doi: 10.3390/biomedicines12051045.
2
A preliminary study of endothelial cell migration during angiogenesis using a meshless method approach.
Int J Numer Method Biomed Eng. 2020 Nov;36(11):e3393. doi: 10.1002/cnm.3393. Epub 2020 Sep 15.
3
Strategies to enhance capillary formation inside biomaterials: a computational study.
Tissue Eng. 2007 Aug;13(8):2073-86. doi: 10.1089/ten.2006.0057.
6
Simulation of the process of angiogenesis: Quantification and assessment of vascular patterning in the chicken chorioallantoic membrane.
Comput Biol Med. 2021 Sep;136:104647. doi: 10.1016/j.compbiomed.2021.104647. Epub 2021 Jul 12.
7
Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems.
Biomech Model Mechanobiol. 2019 Jun;18(3):717-731. doi: 10.1007/s10237-018-01111-3. Epub 2019 Jan 2.
10
Sprouting Angiogenesis: A Numerical Approach with Experimental Validation.
Ann Biomed Eng. 2021 Feb;49(2):871-884. doi: 10.1007/s10439-020-02622-w. Epub 2020 Sep 24.

本文引用的文献

1
Mechanical regulation of signal transduction in angiogenesis.
Front Cell Dev Biol. 2022 Aug 19;10:933474. doi: 10.3389/fcell.2022.933474. eCollection 2022.
2
Mechanical Aspects of Angiogenesis.
Cancers (Basel). 2021 Oct 5;13(19):4987. doi: 10.3390/cancers13194987.
3
Simulation of the process of angiogenesis: Quantification and assessment of vascular patterning in the chicken chorioallantoic membrane.
Comput Biol Med. 2021 Sep;136:104647. doi: 10.1016/j.compbiomed.2021.104647. Epub 2021 Jul 12.
4
Sprouting Angiogenesis: A Numerical Approach with Experimental Validation.
Ann Biomed Eng. 2021 Feb;49(2):871-884. doi: 10.1007/s10439-020-02622-w. Epub 2020 Sep 24.
5
Extracellular matrix compression temporally regulates microvascular angiogenesis.
Sci Adv. 2020 Aug 21;6(34). doi: 10.1126/sciadv.abb6351. Print 2020 Aug.
6
A preliminary study of endothelial cell migration during angiogenesis using a meshless method approach.
Int J Numer Method Biomed Eng. 2020 Nov;36(11):e3393. doi: 10.1002/cnm.3393. Epub 2020 Sep 15.
7
Constant compression decreases vascular bud and VEGFA expression in a rabbit vertebral endplate ex vivo culture model.
PLoS One. 2020 Jun 25;15(6):e0234747. doi: 10.1371/journal.pone.0234747. eCollection 2020.
8
Blood Flow Forces in Shaping the Vascular System: A Focus on Endothelial Cell Behavior.
Front Physiol. 2020 Jun 5;11:552. doi: 10.3389/fphys.2020.00552. eCollection 2020.
9
10
Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model.
Micromachines (Basel). 2019 Jul 4;10(7):451. doi: 10.3390/mi10070451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验