文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

氧化还原响应介孔硅纳米粒子负载脂质双层作为靶向递药载体增强耐药肿瘤治疗效果

Enhanced Efficacy against Drug-Resistant Tumors Enabled by Redox-Responsive Mesoporous-Silica-Nanoparticle-Supported Lipid Bilayers as Targeted Delivery Vehicles.

机构信息

School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.

Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China.

出版信息

Int J Mol Sci. 2024 May 20;25(10):5553. doi: 10.3390/ijms25105553.


DOI:10.3390/ijms25105553
PMID:38791591
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11122197/
Abstract

Multidrug resistance (MDR) is frequently induced after long-term exposure to reduce the therapeutic effect of chemotherapeutic drugs, which is always associated with the overexpression of efflux proteins, such as P-glycoprotein (P-gp). Nano-delivery technology can be used as an efficient strategy to overcome tumor MDR. In this study, mesoporous silica nanoparticles (MSNs) were synthesized and linked with a disulfide bond and then coated with lipid bilayers. The functionalized shell/core delivery systems (HT-LMSNs-SS@DOX) were developed by loading drugs inside the pores of MSNs and conjugating with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and hyaluronic acid (HA) on the outer lipid surface. HT-LMSNs-SS and other carriers were characterized and assessed in terms of various characteristics. HT-LMSNs-SS@DOX exhibited a dual pH/reduction responsive drug release. The results also showed that modified LMSNs had good dispersity, biocompatibility, and drug-loading capacity. In vitro experiment results demonstrated that HT-LMSNs-SS were internalized by cells and mainly by clathrin-mediated endocytosis, with higher uptake efficiency than other carriers. Furthermore, HT-LMSNs-SS@DOX could effectively inhibit the expression of P-gp, increase the apoptosis ratios of MCF-7/ADR cells, and arrest cell cycle at the G0/G1 phase, with enhanced ability to induce excessive reactive oxygen species (ROS) production in cells. In tumor-bearing model mice, HT-LMSNs-SS@DOX similarly exhibited the highest inhibition activity against tumor growth, with good biosafety, among all of the treatment groups. Therefore, the nano-delivery systems developed herein achieve enhanced efficacy towards resistant tumors through targeted delivery and redox-responsive drug release, with broad application prospects.

摘要

多药耐药性(MDR)是由于长期接触化疗药物而导致的治疗效果降低,通常与外排蛋白(如 P-糖蛋白(P-gp))的过度表达有关。纳米递药技术可以作为克服肿瘤 MDR 的有效策略。在本研究中,合成了介孔硅纳米粒子(MSNs)并通过二硫键连接,然后用脂质双层包覆。通过将药物载入 MSNs 的孔内,并在脂质外层与 D-α-生育酚聚乙二醇 1000 琥珀酸(TPGS)和透明质酸(HA)缀合,开发了功能化的壳核递药系统(HT-LMSNs-SS@DOX)。HT-LMSNs-SS 和其他载体的各种特性进行了表征和评估。HT-LMSNs-SS@DOX 表现出双重 pH/还原响应的药物释放。结果还表明,改性 LMSNs 具有良好的分散性、生物相容性和载药能力。体外实验结果表明,HT-LMSNs-SS 被细胞内化,主要通过网格蛋白介导的内吞作用,摄取效率高于其他载体。此外,HT-LMSNs-SS@DOX 可以有效抑制 P-gp 的表达,增加 MCF-7/ADR 细胞的凋亡率,并将细胞周期阻滞在 G0/G1 期,同时增强诱导细胞内产生过多活性氧(ROS)的能力。在荷瘤模型小鼠中,HT-LMSNs-SS@DOX 同样表现出对肿瘤生长的最高抑制活性,所有治疗组中具有良好的生物安全性。因此,本文开发的纳米递药系统通过靶向递药和氧化还原响应性药物释放,实现了对耐药肿瘤的增效作用,具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/68dbf5f98c69/ijms-25-05553-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/8be2465a8cfb/ijms-25-05553-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/b0e6456ade54/ijms-25-05553-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/4f24146808de/ijms-25-05553-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/4af958f1b3ee/ijms-25-05553-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/9094f8e5a481/ijms-25-05553-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/82b39ec3f93a/ijms-25-05553-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/136e0be810be/ijms-25-05553-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/a330b84247a3/ijms-25-05553-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/b59a27d6f922/ijms-25-05553-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/a0e299a0687b/ijms-25-05553-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/db599ffe982e/ijms-25-05553-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/bdb467c7bd8b/ijms-25-05553-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/68dbf5f98c69/ijms-25-05553-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/8be2465a8cfb/ijms-25-05553-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/b0e6456ade54/ijms-25-05553-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/4f24146808de/ijms-25-05553-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/4af958f1b3ee/ijms-25-05553-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/9094f8e5a481/ijms-25-05553-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/82b39ec3f93a/ijms-25-05553-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/136e0be810be/ijms-25-05553-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/a330b84247a3/ijms-25-05553-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/b59a27d6f922/ijms-25-05553-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/a0e299a0687b/ijms-25-05553-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/db599ffe982e/ijms-25-05553-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/bdb467c7bd8b/ijms-25-05553-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dca/11122197/68dbf5f98c69/ijms-25-05553-g012.jpg

相似文献

[1]
Enhanced Efficacy against Drug-Resistant Tumors Enabled by Redox-Responsive Mesoporous-Silica-Nanoparticle-Supported Lipid Bilayers as Targeted Delivery Vehicles.

Int J Mol Sci. 2024-5-20

[2]
TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance.

Mater Sci Eng C Mater Biol Appl. 2017-11-28

[3]
Multifunctional mesoporous silica nanoparticles modified with tumor-shedable hyaluronic acid as carriers for doxorubicin.

Colloids Surf B Biointerfaces. 2016-8-1

[4]
Unique Advantages of Dendrimers-Structured Mesoporous Silica Nanoparticles over Traditional Hollow Ones in Delivering Bcl2-Functional Converting Peptide for Multidrug Resistant Cancer Treatment.

Adv Healthc Mater. 2024-9

[5]
Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin.

Acta Biomater. 2018-9-8

[6]
GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy.

Int J Nanomedicine. 2016-10-7

[7]
A Sequentially Responsive Nanosystem Breaches Cascaded Bio-barriers and Suppresses P-Glycoprotein Function for Reversing Cancer Drug Resistance.

ACS Appl Mater Interfaces. 2020-12-9

[8]
Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance.

ACS Appl Mater Interfaces. 2015-1-27

[9]
Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism.

Nanoscale. 2011-9-5

[10]
Sequential therapy with redox-responsive glucolipid nanocarrier separately delivering siRNA and doxorubicin to overcome multidrug resistance.

Int J Pharm. 2017-10-16

引用本文的文献

[1]
Fabrication of a dual-stimuli-responsive mesoporous organosilica nanoplatform for co-delivery of fungicide and plant immune inducer toward synergistic disease management.

J Nanobiotechnology. 2025-7-31

[2]
A Review on the Recent Advancements of Polymer-Modified Mesoporous Silica Nanoparticles for Drug Delivery Under Stimuli-Trigger.

Polymers (Basel). 2025-6-13

[3]
Proanthocyanidin-Conjugated NIR-ΙΙ Nano-Prodrugs for Reversing Drug Resistance in Photothermal Therapy.

Molecules. 2025-5-27

本文引用的文献

[1]
Red-Light-Responsive Metallopolymer Nanocarriers with Conjugated and Encapsulated Drugs for Phototherapy Against Multidrug-Resistant Tumors.

Small. 2022-7

[2]
A Review of X-ray Photoelectron Spectroscopy Technique to Analyze the Stability and Degradation Mechanism of Solid Oxide Fuel Cell Cathode Materials.

Materials (Basel). 2022-3-30

[3]
Editorial: Unveiling the Impact of Local or Systemic Therapeutic Strategies on the Tumor Microenvironment.

Front Oncol. 2022-1-25

[4]
Targeted delivery of doxorubicin through CD44 aptamer to cancer cells.

Ther Deliv. 2021-10

[5]
Tumor-targeting pH/redox dual-responsive nanosystem epigenetically reverses cancer drug resistance by co-delivering doxorubicin and GCN5 siRNA.

Acta Biomater. 2021-11

[6]
Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy.

Front Bioeng Biotechnol. 2021-6-25

[7]
Targeted Drug Delivery: Trends and Perspectives.

Curr Drug Deliv. 2021

[8]
Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance.

Colloids Surf B Biointerfaces. 2021-9

[9]
Toxicity-attenuated mesoporous silica Schiff-base bonded anticancer drug complexes for chemotherapy of drug resistant cancer.

Colloids Surf B Biointerfaces. 2021-9

[10]
The Effects of Solid and Liquid Lipids on the Physicochemical Properties of Nanostructured Lipid Carriers.

J Pharm Sci. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索