College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China.
State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Molecules. 2024 May 12;29(10):2276. doi: 10.3390/molecules29102276.
Bioelectrochemical systems (BESs) are an innovative technology for the efficient degradation of antibiotics. () MR-1 plays a pivotal role in degrading sulfamethoxazole (SMX) in BESs. Our study investigated the effect of BES conditions on SMX degradation, focusing on microbial activity. The results revealed that BESs operating with a 0.05 M electrolyte concentration and 2 mA/cm current density outperformed electrolysis cells (ECs). Additionally, higher electrolyte concentrations and elevated current density reduced SMX degradation efficiency. The presence of nutrients had minimal effect on the growth of MR-1 in BESs; it indicates that MR-1 can degrade SMX without nutrients in a short period of time. We also highlighted the significance of mass transfer between the cathode and anode. Limiting mass transfer at a 10 cm electrode distance enhanced MR-1 activity and BES performance. In summary, this study reveals the complex interaction of factors affecting the efficiency of BES degradation of antibiotics and provides support for environmental pollution control.
生物电化学系统(BES)是一种高效降解抗生素的创新技术。()MR-1 在 BES 中对磺胺甲恶唑(SMX)的降解起着关键作用。本研究探讨了 BES 条件对 SMX 降解的影响,重点研究了微生物活性。结果表明,在 0.05 M 电解质浓度和 2 mA/cm 电流密度下运行的 BES 优于电解池(EC)。此外,较高的电解质浓度和较高的电流密度会降低 SMX 的降解效率。营养物质的存在对 MR-1 在 BES 中的生长影响不大;这表明 MR-1 可以在短时间内无需营养物质即可降解 SMX。我们还强调了阴极和阳极之间传质的重要性。在 10 cm 的电极距离下限制传质可以增强 MR-1 的活性和 BES 的性能。总之,本研究揭示了影响 BES 降解抗生素效率的因素之间的复杂相互作用,并为环境污染控制提供了支持。