Yang Yun, Ding Yuanzhao, Hu Yidan, Cao Bin, Rice Scott A, Kjelleberg Staffan, Song Hao
‡School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
§Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
ACS Synth Biol. 2015 Jul 17;4(7):815-23. doi: 10.1021/sb500331x. Epub 2015 Feb 5.
Flavins regulate the rate and direction of extracellular electron transfer (EET) in Shewanella oneidensis. However, low concentration of endogenously secreted flavins by the wild-type S. oneidensis MR-1 limits its EET efficiency in bioelectrochemical systems (BES). Herein, a synthetic flavin biosynthesis pathway from Bacillus subtilis was heterologously expressed in S. oneidensis MR-1, resulting in ∼25.7 times' increase in secreted flavin concentration. This synthetic flavin module enabled enhanced bidirectional EET rate of MR-1, in which its maximum power output in microbial fuel cells increased ∼13.2 times (from 16.4 to 233.0 mW/m(2)), and the inward current increased ∼15.5 times (from 15.5 to 255.3 μA/cm(2)).
黄素调节嗜铁素还原地杆菌中细胞外电子转移(EET)的速率和方向。然而,野生型嗜铁素还原地杆菌MR-1内源性分泌的黄素浓度较低,限制了其在生物电化学系统(BES)中的EET效率。在此,来自枯草芽孢杆菌的一条合成黄素生物合成途径在嗜铁素还原地杆菌MR-1中进行了异源表达,导致分泌的黄素浓度增加了约25.7倍。这个合成黄素模块提高了MR-1的双向EET速率,其中其在微生物燃料电池中的最大功率输出增加了约13.2倍(从16.4增加到233.0 mW/m²),内向电流增加了约15.5倍(从15.5增加到255.3 μA/cm²)。