Suppr超能文献

一种基于机器学习的慢性丙型肝炎感染患者死亡率预测模型:一项探索性研究。

A Machine Learning-Based Mortality Prediction Model for Patients with Chronic Hepatitis C Infection: An Exploratory Study.

作者信息

Al Alawi Abdullah M, Al Shuaili Halima H, Al-Naamani Khalid, Al Naamani Zakariya, Al-Busafi Said A

机构信息

Department of Medicine, Sultan Qaboos University Hospital, Muscat 123, Oman.

Internal Medicine Program, Oman Medical Specialty Board, Muscat 130, Oman.

出版信息

J Clin Med. 2024 May 16;13(10):2939. doi: 10.3390/jcm13102939.

Abstract

Chronic hepatitis C (HCV) infection presents global health challenges with significant morbidity and mortality implications. Successfully treating patients with cirrhosis may lead to mortality rates comparable to the general population. This study aims to utilize machine learning techniques to create predictive mortality models for individuals with chronic HCV infections. Data from chronic HCV patients at Sultan Qaboos University Hospital (2009-2017) underwent analysis. Data pre-processing handled missing values and scaled features using Python via Anaconda. Model training involved SelectKBest feature selection and algorithms such as logistic regression, random forest, gradient boosting, and SVM. The evaluation included diverse metrics, with 5-fold cross-validation, ensuring consistent performance assessment. A cohort of 702 patients meeting the eligibility criteria, predominantly male, with a median age of 47, was analyzed across a follow-up period of 97.4 months. Survival probabilities at 12, 36, and 120 months were 90.0%, 84.0%, and 73.0%, respectively. Ten key features selected for mortality prediction included hemoglobin levels, alanine aminotransferase, comorbidities, HCV genotype, coinfections, follow-up duration, and treatment response. Machine learning models, including the logistic regression, random forest, gradient boosting, and support vector machine models, showed high discriminatory power, with logistic regression consistently achieving an AUC value of 0.929. Factors associated with increased mortality risk included cardiovascular diseases, coinfections, and failure to achieve a SVR, while lower ALT levels and specific HCV genotypes were linked to better survival outcomes. This study presents the use of machine learning models to predict mortality in chronic HCV patients, providing crucial insights for risk assessment and tailored treatments. Further validation and refinement of these models are essential to enhance their clinical utility, optimize patient care, and improve outcomes for individuals with chronic HCV infections.

摘要

慢性丙型肝炎(HCV)感染给全球健康带来了挑战,具有重大的发病率和死亡率影响。成功治疗肝硬化患者可能会使死亡率与普通人群相当。本研究旨在利用机器学习技术为慢性HCV感染个体创建预测死亡率模型。对苏丹卡布斯大学医院(2009 - 2017年)慢性HCV患者的数据进行了分析。数据预处理通过Anaconda使用Python处理缺失值并对特征进行缩放。模型训练包括SelectKBest特征选择以及逻辑回归、随机森林、梯度提升和支持向量机等算法。评估包括多种指标,并采用5折交叉验证,以确保一致的性能评估。对702名符合入选标准的患者进行了队列分析,这些患者以男性为主,中位年龄为47岁,随访期为97.4个月。12个月、36个月和120个月时的生存概率分别为90.0%、84.0%和73.0%。为死亡率预测选择的十个关键特征包括血红蛋白水平、丙氨酸转氨酶、合并症、HCV基因型、合并感染、随访持续时间和治疗反应。包括逻辑回归、随机森林、梯度提升和支持向量机模型在内的机器学习模型显示出较高的辨别力,逻辑回归始终实现0.929的AUC值。与死亡率风险增加相关的因素包括心血管疾病、合并感染以及未实现持续病毒学应答(SVR),而较低的ALT水平和特定的HCV基因型与更好的生存结果相关。本研究展示了使用机器学习模型预测慢性HCV患者的死亡率,为风险评估和个性化治疗提供了关键见解。进一步验证和完善这些模型对于提高其临床效用、优化患者护理以及改善慢性HCV感染个体的结局至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2275/11121813/27d8cf66e764/jcm-13-02939-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验