Suppr超能文献

铁氧体基微波吸收材料的研究进展与挑战

Progress and Challenges of Ferrite Matrix Microwave Absorption Materials.

作者信息

Meng Xianfeng, Xu Wenlong, Ren Xujing, Zhu Maiyong

机构信息

School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.

出版信息

Materials (Basel). 2024 May 14;17(10):2315. doi: 10.3390/ma17102315.

Abstract

Intelligent devices, when subjected to multiple interactions, tend to generate electromagnetic pollution, which can disrupt the normal functioning of electronic components. Ferrite, which acts as a microwave-absorbing material (), offers a promising strategy to overcome this issue. To further enhance the microwave absorption properties of ferrite , numerous works have been conducted, including ion doping and combining with other materials. Notably, the microstructure is also key factor that affects the microwave absorption properties of ferrite-based . Thus, this article provides a comprehensive overview of research progress on the influence of the microstructure on ferrite-based . with sheet and layered structures are also current important research directions. For core-shell structure composites, the solid core-shell structure, hollow core-shell structure, yolk-eggshell structure, and non-spherical core-shell structure are introduced. For porous composites, the biomass porous structure and other porous structures are presented. Finally, the development trends are summarized, and prospects for the structure design and preparation of high-performance are predicted.

摘要

智能设备在受到多次相互作用时,往往会产生电磁污染,这可能会扰乱电子元件的正常功能。作为微波吸收材料的铁氧体为解决这一问题提供了一种很有前景的策略。为了进一步提高铁氧体的微波吸收性能,人们开展了大量工作,包括离子掺杂以及与其他材料复合。值得注意的是,微观结构也是影响铁氧体基材料微波吸收性能的关键因素。因此,本文全面综述了微观结构对铁氧体基材料影响的研究进展。具有片状和层状结构的材料也是当前重要的研究方向。对于核壳结构复合材料,介绍了实心核壳结构、空心核壳结构、蛋黄蛋壳结构和非球形核壳结构。对于多孔复合材料,介绍了生物质多孔结构和其他多孔结构。最后总结了发展趋势,并对高性能材料的结构设计与制备前景进行了预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceb1/11123132/c955004c353f/materials-17-02315-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验