Suppr超能文献

基于生物传感器的物联网可穿戴设备,实现精准的身体运动跟踪和定位。

Biosensor-Driven IoT Wearables for Accurate Body Motion Tracking and Localization.

机构信息

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

Faculty of Computing ad AI, Air University, E-9, Islamabad 44000, Pakistan.

出版信息

Sensors (Basel). 2024 May 10;24(10):3032. doi: 10.3390/s24103032.

Abstract

The domain of human locomotion identification through smartphone sensors is witnessing rapid expansion within the realm of research. This domain boasts significant potential across various sectors, including healthcare, sports, security systems, home automation, and real-time location tracking. Despite the considerable volume of existing research, the greater portion of it has primarily concentrated on locomotion activities. Comparatively less emphasis has been placed on the recognition of human localization patterns. In the current study, we introduce a system by facilitating the recognition of both human physical and location-based patterns. This system utilizes the capabilities of smartphone sensors to achieve its objectives. Our goal is to develop a system that can accurately identify different human physical and localization activities, such as walking, running, jumping, indoor, and outdoor activities. To achieve this, we perform preprocessing on the raw sensor data using a Butterworth filter for inertial sensors and a Median Filter for Global Positioning System (GPS) and then applying Hamming windowing techniques to segment the filtered data. We then extract features from the raw inertial and GPS sensors and select relevant features using the variance threshold feature selection method. The extrasensory dataset exhibits an imbalanced number of samples for certain activities. To address this issue, the permutation-based data augmentation technique is employed. The augmented features are optimized using the Yeo-Johnson power transformation algorithm before being sent to a multi-layer perceptron for classification. We evaluate our system using the K-fold cross-validation technique. The datasets used in this study are the Extrasensory and Sussex Huawei Locomotion (SHL), which contain both physical and localization activities. Our experiments demonstrate that our system achieves high accuracy with 96% and 94% over Extrasensory and SHL in physical activities and 94% and 91% over Extrasensory and SHL in the location-based activities, outperforming previous state-of-the-art methods in recognizing both types of activities.

摘要

通过智能手机传感器识别人类运动的领域在研究领域迅速扩展。这个领域在医疗保健、体育、安全系统、家庭自动化和实时位置跟踪等各个领域都有很大的潜力。尽管现有的研究数量相当多,但大部分研究主要集中在运动活动上。相对较少的研究关注人类定位模式的识别。在当前的研究中,我们介绍了一种通过促进识别人体物理和基于位置的模式的系统。该系统利用智能手机传感器的功能来实现其目标。我们的目标是开发一个能够准确识别不同人体物理和定位活动的系统,如步行、跑步、跳跃、室内和室外活动。为此,我们使用巴特沃斯滤波器对惯性传感器和中值滤波器对 GPS 对原始传感器数据进行预处理,然后应用汉明窗技术对滤波后的数据进行分段。然后,我们从原始惯性和 GPS 传感器中提取特征,并使用方差阈值特征选择方法选择相关特征。Extrasensory 数据集的某些活动样本数量不平衡。为了解决这个问题,采用基于排列的数据增强技术。使用 Yeo-Johnson 幂变换算法对增强特征进行优化,然后将其发送到多层感知机进行分类。我们使用 K 折交叉验证技术评估我们的系统。本研究中使用的数据集是 Extrasensory 和 Sussex Huawei Locomotion (SHL),其中包含物理和定位活动。我们的实验表明,我们的系统在物理活动中分别达到了 96%和 94%的高精度,在基于位置的活动中分别达到了 94%和 91%的高精度,优于以前的识别这两种活动的最先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dcc/11124841/9495529e1f5c/sensors-24-03032-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验